References
- P. Aiena, Semi-Fredholm operators, perturbation theory and localized SVEP, XX Escuela Venezolana de Mathematicas, Ed. Ivic, Merida (Venezuela), 2007.
- S. C. Arora and J. Bhola, Essentially slant Toeplitz operators, Banach J. Math. Anal. 3 (2009), no. 2, 1-8. https://doi.org/10.15352/bjma/1261086703
- S. C. Arora and R. Kathuria, Slant weighted Toeplitz operator, Int. J. Pure Appl. Math. 62 (2010), no. 4, 433-442.
- S. C. Arora and R. Kathuria, On weighted Toeplitz operators, Aust. J. Math. Anal. Appl. 8 (2011), no. 1, Art. 11, 10 pp.
- S. C. Arora and R. Kathuria, The compression of a slant weighted Toeplitz operator, J. Adv. Res. Pure Math. 4 (2012), no. 4, 48-56. https://doi.org/10.5373/jarpm.1075.081611
- J. Barra and P. R. Halmos, Asymptotic Toeplitz operators, Trans. Amer. Math. Soc. 273 (1982), no. 2, 621-630. https://doi.org/10.2307/1999932
-
G. Datt and N. Ohri, Essentially generalized
$\lambda$ -slant Toeplitz operators, Tbilisi Math. J. 10 (2017), no. 4, 63-72. https://doi.org/10.1515/tmj-2017-0047 - G. Datt and D. K. Porwal, On a generalization of weighted slant Hankel operators, Math. Slovaca 66 (2016), no. 5, 1193-1206. https://doi.org/10.1515/ms-2016-0215
- R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
- A. Gupta and S. K. Singh, Slant H-Toeplitz operators on the Hardy space, J. Korean Math. Soc. 56 (2019), no. 3, 703-721. https://doi.org/10.4134/JKMS.j180324
- M. C. Ho, Properties of slant Toeplitz operators, Indiana Univ. Math. J. 45 (1996), no. 3, 843-862. https://doi.org/10.1512/iumj.1996.45.1973
- M. C. Ho, Spectra of slant Toeplitz operators with continuous symbols, Michigan Math. J. 44 (1997), no. 1, 157-166. https://doi.org/10.1307/mmj/1029005627
- R. L. Kelley, Weighted shifts on Hilbert space, ProQuest LLC, Ann Arbor, MI, 1966.
- V. Lauric, On a weighted Toeplitz operator and its commutant, Int. J. Math. Math. Sci. 2005 (2005), no. 6, 823-835. https://doi.org/10.1155/IJMMS.2005.823
- A. L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, 49-128. Math. Surveys, 13, Amer. Math. Soc., Providence, RI, 1974.