DOI QR코드

DOI QR Code

A REMARK ON CONVERGENCE THEORY FOR ITERATIVE PROCESSES OF PROINOV CONTRACTION

  • Bisht, Ravindra K. (Department of Mathematics National Defence Academy)
  • Received : 2018.09.13
  • Accepted : 2018.12.18
  • Published : 2019.10.31

Abstract

In this paper, we extend the study of general convergence theorems for the Picard iteration of Proinov contraction from the class of continuous mappings to the class of discontinuous mappings. As a by product we provide a new affirmative answer to the open problem posed in [20].

Keywords

References

  1. M. Abtahi, Fixed point theorems for Meir-Keeler type contractions in metric spaces, Fixed Point Theory 17 (2016), no. 2, 225-236.
  2. R. K. Bisht, A remark on the result of Radu Miculescu and Alexandru Mihail, J. Fixed Point Theory Appl. 19 (2017), no. 4, 2437-2439. https://doi.org/10.1007/s11784-017-0433-1
  3. R. K. Bisht and R. P. Pant, A remark on discontinuity at fixed point, J. Math. Anal. Appl. 445 (2017), no. 2, 1239-1242. https://doi.org/10.1016/j.jmaa.2016.02.053
  4. R. K. Bisht and V. Rakocevic, Generalized Meir-Keeler type contractions and discontinuity at fixed point, Fixed Point Theory 19 (2018), no. 1, 57-64. https://doi.org/10.24193/fpt-ro.2018.1.06
  5. D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464. https://doi.org/10.2307/2035677
  6. F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 571-575. https://doi.org/10.1090/S0002-9904-1966-11544-6
  7. Lj. B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267-273. https://doi.org/10.2307/2040075
  8. J. Jachymski, Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl. 194 (1995), no. 1, 293-303. https://doi.org/10.1006/jmaa.1995.1299
  9. M. Kuczma, B. Choczewski, and R. Ger, Iterative functional equations, Encyclopedia of Mathematics and its Applications, 32, Cambridge University Press, Cambridge, 1990. https://doi.org/10.1017/CBO9781139086639
  10. T. C. Lim, On characterizations of Meir-Keeler contractive maps, Nonlinear Anal. 46 (2001), no. 1, Ser. A: Theory Methods, 113-120. https://doi.org/10.1016/S0362-546X(99)00448-4
  11. M. Maiti and T. K. Pal, Generalizations of two xed-point theorems, Bull. Calcutta Math. Soc. 70 (1978), no. 2, 57-61.
  12. J. Matkowski, Integrable solutions of functional equations, Dissertationes Math. 127 (1975), 68 pp.
  13. A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329. https://doi.org/10.1016/0022-247X(69)90031-6
  14. N. Y. Ozgur and N. Tas, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc. 42 (2019), no. 4, 1433-1449. https://doi.org/10.1007/s40840-017-0555-z
  15. R. P. Pant, Discontinuity and xed points, J. Math. Anal. Appl. 240 (1999), no. 1, 284-289. https://doi.org/10.1006/jmaa.1999.6560
  16. R. P. Pant, N. Y. Ozgur, and N. Tas, On discontinuity problem at fixed point, Bull. Malays. Math. Sci. Soc. (2018); https://doi.org/10.1007/s40840-018-0698-6.
  17. A. Pant and R. P. Pant, Fixed points and continuity of contractive maps, Filomat 31 (2017), no. 11, 3501-3506. https://doi.org/10.2298/fil1711501p
  18. S. Park and J. S. Bae, Extensions of a xed point theorem of Meir and Keeler, Ark. Mat. 19 (1981), no. 2, 223-228. https://doi.org/10.1007/BF02384479
  19. P. D. Proinov, Fixed point theorems in metric spaces, Nonlinear Anal. 64 (2006), no. 3, 546-557. https://doi.org/10.1016/j.na.2005.04.044
  20. B. E. Rhoades, Contractive definitions and continuity, in Fixed point theory and its applications (Berkeley, CA, 1986), 233-245, Contemp. Math., 72, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/072/956495
  21. K. P. R. Sastry, G. V. R. Babu, and M. V. R. Kameswari, Fixed points of strip $\phi$-contractions, Math. Commun. 14 (2009), no. 2, 183-192.