References
- M. Abtahi, Fixed point theorems for Meir-Keeler type contractions in metric spaces, Fixed Point Theory 17 (2016), no. 2, 225-236.
- R. K. Bisht, A remark on the result of Radu Miculescu and Alexandru Mihail, J. Fixed Point Theory Appl. 19 (2017), no. 4, 2437-2439. https://doi.org/10.1007/s11784-017-0433-1
- R. K. Bisht and R. P. Pant, A remark on discontinuity at fixed point, J. Math. Anal. Appl. 445 (2017), no. 2, 1239-1242. https://doi.org/10.1016/j.jmaa.2016.02.053
- R. K. Bisht and V. Rakocevic, Generalized Meir-Keeler type contractions and discontinuity at fixed point, Fixed Point Theory 19 (2018), no. 1, 57-64. https://doi.org/10.24193/fpt-ro.2018.1.06
- D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464. https://doi.org/10.2307/2035677
- F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 571-575. https://doi.org/10.1090/S0002-9904-1966-11544-6
- Lj. B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267-273. https://doi.org/10.2307/2040075
- J. Jachymski, Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl. 194 (1995), no. 1, 293-303. https://doi.org/10.1006/jmaa.1995.1299
- M. Kuczma, B. Choczewski, and R. Ger, Iterative functional equations, Encyclopedia of Mathematics and its Applications, 32, Cambridge University Press, Cambridge, 1990. https://doi.org/10.1017/CBO9781139086639
- T. C. Lim, On characterizations of Meir-Keeler contractive maps, Nonlinear Anal. 46 (2001), no. 1, Ser. A: Theory Methods, 113-120. https://doi.org/10.1016/S0362-546X(99)00448-4
- M. Maiti and T. K. Pal, Generalizations of two xed-point theorems, Bull. Calcutta Math. Soc. 70 (1978), no. 2, 57-61.
- J. Matkowski, Integrable solutions of functional equations, Dissertationes Math. 127 (1975), 68 pp.
- A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329. https://doi.org/10.1016/0022-247X(69)90031-6
- N. Y. Ozgur and N. Tas, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc. 42 (2019), no. 4, 1433-1449. https://doi.org/10.1007/s40840-017-0555-z
- R. P. Pant, Discontinuity and xed points, J. Math. Anal. Appl. 240 (1999), no. 1, 284-289. https://doi.org/10.1006/jmaa.1999.6560
- R. P. Pant, N. Y. Ozgur, and N. Tas, On discontinuity problem at fixed point, Bull. Malays. Math. Sci. Soc. (2018); https://doi.org/10.1007/s40840-018-0698-6.
- A. Pant and R. P. Pant, Fixed points and continuity of contractive maps, Filomat 31 (2017), no. 11, 3501-3506. https://doi.org/10.2298/fil1711501p
- S. Park and J. S. Bae, Extensions of a xed point theorem of Meir and Keeler, Ark. Mat. 19 (1981), no. 2, 223-228. https://doi.org/10.1007/BF02384479
- P. D. Proinov, Fixed point theorems in metric spaces, Nonlinear Anal. 64 (2006), no. 3, 546-557. https://doi.org/10.1016/j.na.2005.04.044
- B. E. Rhoades, Contractive definitions and continuity, in Fixed point theory and its applications (Berkeley, CA, 1986), 233-245, Contemp. Math., 72, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/072/956495
-
K. P. R. Sastry, G. V. R. Babu, and M. V. R. Kameswari, Fixed points of strip
$\phi$ -contractions, Math. Commun. 14 (2009), no. 2, 183-192.