DOI QR코드

DOI QR Code

Optimal valve installation of water distribution network considering abnormal water supply scenarios

비정상 물공급 시나리오를 고려한 상수도관망 최적 밸브위치 결정

  • Lee, Seungyub (Department of Civil and Architectural Engineering and Mechanics, University of Arizona) ;
  • Jung, Donghwi (Department of Civil Engineering, Keimyung University)
  • 이승엽 (애리조나대학교 건축토목공학과) ;
  • 정동휘 (계명대학교 토목공학과)
  • Received : 2019.09.13
  • Accepted : 2019.09.27
  • Published : 2019.10.31

Abstract

Valve in water distribution network (WDN), that controls the flow in pipes, is used to isolate a segment (a part of WDN) under abnormal water supply conditions (e.g., pipe breakage, water quality failure event). The segment isolation degrades pressure and water serviceability in neighboring area during the water service outage of the segment. Recent hydraulic and water quality failure events reported encouraging WDN valve installation based on various abnormal water supply scenarios. This study introduces a scenario-based optimal valve installation approach to optimize the number of valves, the amount of undelivered water, and a shortest water supply path indicator (i.e., Hydraulic Geodesic Index). The proposed approach is demonstrated in the valve installation of Pescara network, and the optimal valve sets are obtained under multiple scenarios and compared to the existing valve set. Pressure-driven analysis (PDA) scheme is used for a network hydraulic simulation. The optimal valve set derived from the proposed method has 19 fewer valves than the existing valve set in the network and the amount of undelivered water was also lower for the optimal valve set. Reducing the reservoir head requires a greater number of valves to achieve the similar functionality of the WDN with the optimal valve set of the original reservoir head. This study also compared the results of demand-driven analysis (DDA) and the PDA and confirmed that the latter is required for optimal valve installation.

상수도 관망 밸브는 평상시 관로의 유향을 변경하는 역할을 하지만, 관로 파손, 수질 문제 등 사고 발생 시 해당 구역을 격리하는데에도 이용된다. 밸브조작에 의한 구역 단수는 주변 지역의 압력 및 물 공급 성능 저하를 유발한다. 최근 안정적인 상수도 관망 물 공급을 위협하는 사고가 다양하고 빈번하게 발생하고 있으며, 이에 따라 다양한 시나리오를 고려하여 밸브 위치 결정을 하는 것이 필요하다고 할 수 있다. 따라서 본 연구에서는 밸브의 개수, 구역격리 시 물 부족량, 수리학적 거리 인자(Hydraulic Geodesic Index, HGI)를 통합한 목적함수를 개발하고, 다양한 물 부족 시나리오에 기반한 밸브 최적 위치 결정 방법론을 제안한다. 제안한 방법론은 페스카라 관망에 적용되었으며, 시나리오별로 도출된 최적 밸브 설계안의 차이점을 분석하였다. 최적 밸브 위치 탐색 과정 중 수행된 관망 수리해석은 압력 기반(Pressure Driven Analysis, PDA)으로 수행하였다. 개발된 방법론으로 도출한 최적 밸브 설계안은 기존 설계안 대비 밸브 개수가 최대 19개나 적었고, 세그먼트 격리 시 물 공급 부족량 또한 상대적으로 작았다. 수원 수두가 낮은 시나리오를 고려할수록 더 많은 밸브가 설치되었는데, 밸브 추가 설치에 따른 비용증가는 다양한 시나리오에서 물 공급 성능 향상으로 이어짐을 확인하였다. 또한, 세그먼트 격리 상황 모의를 압력 및 유량 기반 해석으로 수행한 결과를 비교하여, 밸브 최적 위치 설계 수행 시 압력 기반 해석이 필요함을 확인하였다.

Keywords

References

  1. Alvisi, S., Creaco, E., and Franchini, M. (2011). "Segment identification in water distribution systems." Urban Water Journal, Vol. 8, No. 4, pp. 203-217. https://doi.org/10.1080/1573062X.2011.595803
  2. Araujo, L., Ramos, H., and Coelho, S. (2006). "Pressure control for leakage minimisation in water distribution systems management." Water Resources Management, Vol. 20, No. 1, pp. 133-149. https://doi.org/10.1007/s11269-006-4635-3
  3. Bragalli, C., D'Ambrosio, C., Lee, J., Lodi, A., and Toth, P. (2012). "On the optimal design of water distribution networks: A practical MINLP approach." Optimization and Engineering, Vol. 13, No. 2, pp. 219-246. https://doi.org/10.1007/s11081-011-9141-7
  4. Choi, Y., Jung, D., Jun, H., and Kim, J. (2018). "Improving water distribution systems robustness through optimal valve installation." Water, Vol. 10, No. 9, p. 1223. https://doi.org/10.3390/w10091223
  5. Creaco, E., Franchini, M., and Alvisi, S. (2010). "Optimal placement of isolation valves in water distribution systems based on valve cost and weighted average demand shortfall." Water Resources Management, Vol. 24, No. 15, pp. 4317-4338. https://doi.org/10.1007/s11269-010-9661-5
  6. Creaco, E., Franchini, M., and Alvisi, S. (2012). "Evaluating water demand shortfalls in segment analysis." Water Resources Management, Vol. 26, No. 8, pp. 2301-2321. https://doi.org/10.1007/s11269-012-0018-0
  7. Di Nardo, A., Di Natale, M., Santonastaso, G. F., Tzatchkov, V. G., and Alcocer-Yamanaka, V. H. (2013). "Water network sectorization based on graph theory and energy performance indices." Journal of Water Resources Planning and Management, Vol. 140, No. 5, pp. 620-629. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000364
  8. Dijkstra, E. (1959). "A note on two problems in connexion with graphs (PDF)." Numerische Mathematik. Vol. 1, No. 1, pp. 269-271. doi:10.1007/BF01386390.
  9. Giustolisi, O., and Savic, D. (2010). "Identification of segments and optimal isolation valve system design in water distribution networks." Urban Water Journal, Vol. 7, No. 1, pp. 1-15. https://doi.org/10.1080/15730620903287530
  10. Herrera, M., Abraham, E., and Stoianov, I. (2016). "A graph-theoretic framework for assessing the resilience of sectorised water distribution networks." Water Resources Management, Vol. 30, No. 5, pp. 1685-1699. https://doi.org/10.1007/s11269-016-1245-6
  11. Jones, E., Travis O., and Peterson, P. (2014). {SciPy}: open source scientific tools for {Python}.
  12. Jowitt, P., and Xu, C. (1990). "Optimal valve control in water-distribution networks." Journal of Water Resources Planinning and Management, Vol. 116, No. 4, pp. 455-472. https://doi.org/10.1061/(ASCE)0733-9496(1990)116:4(455)
  13. Judi, D., and McPherson, T. (2015). Development of extended period pressure-dependent demand water distribution models. Los Alamos National Lab. (LANL), Los Alamos, NM (United States).
  14. Jun, H. (2005). "Isolating subsystems by valves in a water distribution system and evaluating the system performance." Journal of Korea Water Resources Association, KWRA, Vol. 38, No. 7, pp. 585-593. https://doi.org/10.3741/JKWRA.2005.38.7.585
  15. Jun, H. (2006). "An evaluation of the pipe failure impact in a water distribution system considering subsystem isolation." Journal of Korea Water Resources Association, KWRA, Vol. 39, No. 2, pp. 89-98. https://doi.org/10.3741/JKWRA.2006.39.2.089
  16. Jun, H., and Loganathan, G. V. (2007). "Valve-controlled segments in water distribution systems." Journal of Water Resources Planning and Management, Vol. 133, No. 2, pp. 145-155. https://doi.org/10.1061/(ASCE)0733-9496(2007)133:2(145)
  17. Jun, H., Loganathan, G. V., Deb, A., and Grayman, W. (2007a) "Valve distribution and impact analysis in water distribution systems." Journal of Environmental Engineering, Vol. 133, No. 8, pp. 790-799 https://doi.org/10.1061/(ASCE)0733-9372(2007)133:8(790)
  18. Jun, H., Park, J., Baek, C., and Kim, J. (2007b). "A segment-based minimum cutset method for estimating the reliability of water distribution systems." Journal of Korea Water Resources Association, KWRA, Vol. 40, No. 9, pp. 735-742. https://doi.org/10.3741/JKWRA.2007.40.9.735
  19. Kang, D., and Lansey, K. (2009). "Real-time optimal valve operation and booster disinfection for water quality in water distribution systems." Journal of Water Resources Planning and Management, Vol. 136, No. 4, pp. 463-473. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000056
  20. Kim, J., and Jun, H. (2013). "An exploratory development of a mathematical programming model for planning of restricted water supply." Journal of Korean Society of Hazard Mitigation, Vol. 13, No. 4, pp. 131-136. https://doi.org/10.9798/KOSHAM.2013.13.4.131
  21. Lee, H., Jun, H., Baek, S., and Kim, J. (2018). "Development and application of advanced-pressure driven analysis model considering limited reservoir." Journal of the Korean Society of Hazard Mitigation, Vol. 18, No. 2, pp. 271-280. https://doi.org/10.9798/kosham.2018.18.2.271
  22. Lee, S., and Jung, D. (2018). "Correlation analysis between energy indices and source-to-node shortest pathway of water distribution network." Journal of Korea Water Resources Association, Vol. 51, No. 11, pp. 989-998. https://doi.org/10.3741/JKWRA.2018.51.11.989
  23. Lee, S., Oak, S., Jung, D., and Jun, H. (2019). "Development of Failure Cause-Impact-Duration (CID) plots for water supply and distribution system management." Water, Vol. 11, No. 8, p. 1719. https://doi.org/10.3390/w11081719
  24. Lee, S., Yoo, D. G., Jung, D., and Kim, J. H. (2018). "Application of life cycle energy analysis for designing a water distribution network." The International Journal of Life Cycle Assessment, Vol. 23, No. 6, pp. 1174-1191. https://doi.org/10.1007/s11367-017-1346-3
  25. Lim, G., and Kang, D. (2019). "Optimal placement of isolation valves in water distribution networks based on segment analysis." Journal of Korea Water Resources Association, KWRA, Vol. 52, No. 4, pp. 291-300. https://doi.org/10.3741/JKWRA.2019.52.4.291
  26. Ministry of Environment (2010). Water distribution system stadards.
  27. Oak, S., Baek, S., Lee, H., and Jun, H. (2018). "An application of the A-PDA model for the interconnected operation among adjacent blocks of water distribution systems in case of emergency." Journal of the Korean Society of Hazard Mitigation, Vol. 18, No. 2, pp. 231-237. https://doi.org/10.9798/kosham.2018.18.2.231
  28. Rana, S., and Boccelli, D. (2016). "Contaminant spread forecasting and confirmatory sampling location identification in a water-distribution system." Journal of Water Resources Planning and Management, Vol. 142, No. 12, p. 04016059. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000704
  29. Rossman, L. A. (2000). EPANET 2: users manual.
  30. Shin, S., Lee, S., Judi, D., Parvania, M., Goharian, E., McPherson, T., and Burian, S. (2018). "A systematic review of quantitative resilience measures for water infrastructure systems." Water, Vol. 10, No. 2, pp. 164-189. https://doi.org/10.3390/w10020164
  31. Yazdani, A., and Jeffrey, P. (2011). "Applying network theory to quantify the redundancy and structural robustness of water distribution systems." Journal of Water Resources Planning and Management, Vol. 138, No. 2, pp. 153-161. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000159