References
- Blanc RS and Richard S (2017) Arginine Methylation: The Coming of Age. Molecular cell 65, 8-24. https://doi.org/10.1016/j.molcel.2016.11.003
- Bedford MT and Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol cell 33, 1-13 https://doi.org/10.1016/j.molcel.2008.12.013
- Morales Y, Caceres T, May K and Hevel JM (2016) Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch Biochem Biophys 590, 138-152 https://doi.org/10.1016/j.abb.2015.11.030
- Wolf SS (2009) The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci 66, 2109-2121 https://doi.org/10.1007/s00018-009-0010-x
- Feng Y, Maity R, Whitelegg JP et al (2013) Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. J Biol Chem 288, 37010-37025 https://doi.org/10.1074/jbc.M113.525345
- Kousaka A, Mori Y, Koyama Y, Taneda T, Miyata S and Tohyama M (2009) The distribution and characterization of endogenous protein arginine N-methyltransferase 8 in mouse CNS. Neuroscience 163, 1146-1157 https://doi.org/10.1016/j.neuroscience.2009.06.061
- Lee J, Sayegh J, Daniel J, Clarke S and Bedford M (2005) PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family. J Biol Chem 280, 32890-32896 https://doi.org/10.1074/jbc.M506944200
- Sayegh J, Webb K, Cheng D, Bedford MT and Clarke SG (2007) Regulation of protein arginine methyltransferase 8 (PRMT8) activity by its N-terminal domain. J Biol Chem 282, 36444-36453 https://doi.org/10.1074/jbc.M704650200
- Kim JD, Park K, Ishida J et al (2015) PRMT8 as a phospholipase regulates Purkinje cell dendritic arborization and motor coordination. Sci Adv 1, e1500615 https://doi.org/10.1126/sciadv.1500615
- Penney J, Seo J, Kritskiy O and Elmsaouri S (2017) Loss of Protein Arginine Methyltransferase 8 Alters Synapse Composition and Function, Resulting in Behavioral Defects. J Neurosci 37, 8655-8666 https://doi.org/10.1523/JNEUROSCI.0591-17.2017
- Lee PK, Goh WW and Sng JC (2017) Network-based characterization of the synaptic proteome reveals that removal of epigenetic regulator Prmt8 restricts proteins associated with synaptic maturation. J Neurochem 140, 613-62 https://doi.org/10.1111/jnc.13921
- Simandi Z, Paje, K, Karolyi K and Sieler T (2018) Arginine Methyltransferase PRMT8 Provides Cellular Stress Tolerance in Aging Motoneurons. J Neurosci 38, 7683-7700 https://doi.org/10.1523/JNEUROSCI.3389-17.2018
- Schapira M and Ferreira de Freitas R (2014) Structural biology and chemistry of protein arginine methyltransferases. Medchemcomm 5, 1779-178 https://doi.org/10.1039/C4MD00269E
- Toma-Fukai S, Kim JD, Park KE et al (2016) Novel helical assembly in arginine methyltransferase 8. J Mol Biol 428, 1197-1208 https://doi.org/10.1016/j.jmb.2016.02.007
- Jun YW, Lee SH, Shim J et al (2016) Dual roles of the N-terminal coiled-coil domain of an Aplysia sec7 protein: homodimer formation and nuclear export. J Neurochem 139, 1102-1112 https://doi.org/10.1111/jnc.13875
- Kim KH, Jun YW, Park Y et al (2014) Intracellular membrane association of the Aplysia cAMP phosphodiesterase long and short forms via different targeting mechanisms. J Biol Chem 289, 25797-25811 https://doi.org/10.1074/jbc.M114.572222
- McLaughlin S and Aderem A (1995) The myristoylelectrostatic switch: a modulator of reversible proteinmembrane interactions. Trends Biochem Sci 20, 272-276 https://doi.org/10.1016/S0968-0004(00)89042-8
- Swierczynski SL and Blackshear PJ (1996) Myristoylationdependent and electrostatic interactions exert independent effects on the membrane association of the myristoylated alanine-rich protein kinase C substrate protein in intact cells. J Biol Chem 271, 23424-23430. https://doi.org/10.1074/jbc.271.38.23424
- Jang DJ and Lee JA (2016) The roles of phosphoinositides in mammalian autophagy. Arch Pharm Res 39, 1129-36 https://doi.org/10.1007/s12272-016-0777-x
- Roise D and Schatz G (1988) Mitochondrial presequences. J Biol Chem 263, 4509-4511 https://doi.org/10.1016/S0021-9258(18)68809-X
- Pfanner N (2000) Protein sorting: recognizing mitochondrial presequences. Curr Biol 10, R412-415 https://doi.org/10.1016/S0960-9822(00)00507-8
- Lin YL, Tsai YJ, Liu YF et al (2013) The critical role of protein arginine methyltransferase prmt8 in zebrafish embryonic and neural development is non-redundant with its paralogue prmt1. PLoS One 8, e55221 https://doi.org/10.1371/journal.pone.0055221
- Jeong HC, Park SJ, Choi JJ et al (2017) PRMT8 Controls the Pluripotency and Mesodermal Fate of Human Embryonic Stem Cells By Enhancing the PI3K/AKT/SOX2 Axis. Stem Cells 35, 2037-2049 https://doi.org/10.1002/stem.2642
- Lee YK, Jun YW, Choi HE et al (2017) Development of LC3/GABARAP sensors containing a LIR and a hydrophobic domain to monitor autophagy. EMBO J 36, 1100-1116 https://doi.org/10.15252/embj.201696315
- Shin CH, Ryu S and Kim HH (2017) hnRNPK-regulated PTOV1-AS1 modulates heme oxygenase-1 expression via miR-1207-5p. BMB Rep 50, 220-225 https://doi.org/10.5483/BMBRep.2017.50.4.024
- Jang E, Lee HR, Lee GH et al (2017) Bach2 represses the AP-1-driven induction of interleukin-2 gene transcription in CD4 T cells. BMB Rep 50, 472-477 https://doi.org/10.5483/BMBRep.2017.50.9.124
- Hwang HS, Choi MH and Kim HA (2018) 29-kDa FN-f inhibited autophagy through modulating localization of HMGB1 in human articular chondrocytes. BMB Rep 51, 508-513 https://doi.org/10.5483/BMBRep.2018.51.10.058