DOI QR코드

DOI QR Code

Experimental analysis of geomorphic changes in weir downstream by behavior of alternate bar upstream

보 상류 교호사주의 거동에 따른 하류 지형변화에 대한 실험적 분석

  • Lee, KyungSu (National Disaster Management Institute, Ministry of the Interior and Safety) ;
  • Jang, Chang-Lae (Department of Civil Engineering, Korea National University of Transportation) ;
  • Kim, GiJung (Department of Civil Engineering, Korea National University of Transportation)
  • 이경수 (행정안전부 국립재난안전연구원) ;
  • 장창래 (한국교통대학교 토목공학과) ;
  • 김기정 (한국교통대학교 토목공학과)
  • Received : 2019.07.10
  • Accepted : 2019.09.24
  • Published : 2019.10.31

Abstract

This study analyzes the impact on geomorphic changes downstream due to alternate bars developed weir upstream through laboratory experiments. The disturbance, such as a spur in the side wall, of the flow at the inlet of the channel triggers the development of alternate bar upstream at the beginning of the experiment, and gradually moved downstream with keeping their shapes over time. The bed in the downstream of weir in the mid of channel scoured due to the scarcity of sediment inflow because weir upstream traps it. Moreover, bar migration speed decreases as the bars approaches to the weir with time. However, as time increases, the alternate bars upstream migrate over the weir, and sediment in the eroded bed of the weir downstream are deposited. The phase of the bar upstream changes oppositely after passing through the weir. The phase of the bar downstream changes rapidly as the shape of alternate bar is clear upstream, which is affected by the strong disturbance. The phase of bar changes, and the bar migration speed decreases gradually with time, and finally stopped due to forcing effects on the bar by the disturbance. The faster the reaction of alternate bar with a long spur, the larger the bar height formed downstream and the shorter the bar length. This means that the larger the forcing effect of bar, the more it affects the bar migration. In addition, although the size of the alternate bar increases over time, the bar doesn't migrate downstream and a forced bar is generated.

본 연구에서는 실내실험을 통해 하천횡단 수리구조물인 보에 의하여 상류에서 형성된 사주가 하류 지형변화에 미치는 영향을 분석하였다. 통수초기 수로의 유입구에서 흐름 교란에 의하여 강제효과가 발생하면서 상류에서부터 교호사주가 발달하고 일정한 형상을 유지한 상태로 하류로 이동하였다. 상류에서 발생한 사주가 보를 통과하는 순간, 보 하류에 세굴되었던 하상은 퇴적이 진행되고 사주의 위상이 변화되었다. 우안에서 발달한 세굴심은 하류로 이동하지만, 사주의 위상이 변화되면서 좌안으로 이동하였다. 상류에서 발생되는 교호사주의 형태가 뚜렷할수록 하류에서 발생한 교호사주의 위상변화는 빠르게 진행되었다. 또한 강제효과가 클수록, 상류에서 교호사주의 형태는 뚜렷하게 나타났다. 사주의 위상이 바뀌면서 하류의 사주는 이동속도가 점차 감소하여 이동이 정지되는 것으로 나타났다. 교호사주의 발달이 빠를수록 하류에서 형성된 사주의 파고는 크고 파장은 짧았다. 이것은 사주의 강제효과가 클수록 사주의 이동에 영향을 주는 것을 의미한다. 또한, 시간이 증가하면서 교호사주의 크기는 증가하지만 하류로 이동하지 않고 정지되어 고정사주가 형성되었다.

Keywords

References

  1. Blondeaux, P., and Seminara, G. (1985). "A unified bar-bend theory of river meanders." Journal of Fluid Mechanics, Vol. 157, pp. 449-470. https://doi.org/10.1017/S0022112085002440
  2. Crosato, A., and Mosselman, E. (2009). "Simple physicsbased predictor for the number of river bars and the transition between meandering and braiding." Water Resources Research, AGU, Vol. 45, No. 3, W03424. https://doi.org/10.1029/2008WR007242
  3. Crosato, A., Mosselman, E., Desta, F. B., and Uijttewaal, W. S. J. (2011). "Experimental and numerical evidence for intrinsic nonmigrating bars in alluvial channels." Water Resources Research, AGU, Vol. 47, No. 3, W03511. https://doi.org/10.1029/2010WR009714
  4. Howard, H., and Chang, M. (1985). "Formation of alternate bars." Journal of Hydraulic Engineering, ASCE, Vol. 111, No. 11, pp. 1412-1420. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:11(1412)
  5. Ikeda, S. (1984). "Prediction of alternate bar wavelength and height." Journal of Hydraulic Engineering, ASCE, Vol. 110, No. 4, pp. 371-386. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:4(371)
  6. Ikeda, S., and McEwan, I. K. (2009). Flow and sediment transport in compound channels: the experience of Japanese and UK research. International Association of Hydraulic Engineering and Research, IAHR, CRC Press, New York, USA.
  7. Ikeda, S., Parker, G., and Sawai, K. (1981). "Bend theory of river meanders. Part 1. Linear development." Journal of Fluid Mechanics, Vol. 112, pp. 363-337. https://doi.org/10.1017/S0022112081000451
  8. Jang, C.-L., and Kim, G. J. (2017). "Experimental analysis of flow characteristics and bed changes over oblique weirs." Ecology and Resilient Infrastructure, Vol. 4, No. 4, pp. 245-254. https://doi.org/10.17820/ERI.2017.4.4.245
  9. Jang, C.-L., and Shimizu, Y. (2005). "Numerical simulations of the behavior of alternate bars with different bank strength." Journal of Hydraulic Research, Vol. 43, No. 6, pp. 595-611. https://doi.org/10.1080/00221680509500379
  10. Jang, C.-L., Lee, G. M., and Kim, G. H. (2008). "Lateral migration features of the alluvial channels in hapyeong intake station, Nakdong river." Journal of Korea Water Resources Association, KWRA, Vol. 41, No. 4, pp. 395-404. https://doi.org/10.3741/JKWRA.2008.41.4.395
  11. Jang, C-L., and Song, Y. J. (2016). "Experimental analysis on the behavior of alternate bars in a channel with a spur dike." Ecology and Resilient Infrastructure, Vol. 3, No. 1, pp. 8-13. https://doi.org/10.17820/eri.2016.3.1.008
  12. Kim, G. J., and Jang, C.-L. (2016). "Numerical analysis of the behavior of bars in a compound channel with a drop structure." Ecology and Resilient Infrastructure, Vol. 3, No. 1, pp. 14-21. https://doi.org/10.17820/eri.2016.3.1.014
  13. Kuroki, M., and Kishi, T. (1984). "Regime criteria on bars and braids in alluvial straight channels." Proceedings of Japan Society of Civil Engineers, Vol. 342, pp. 87-96.
  14. Lanzoni, S. (2000a). "Experiments on bar formation in a straight flume: 1. Univorm sediment." Water Resources Research, AGU, Vol. 36, No. 11, pp. 3337-3349. https://doi.org/10.1029/2000WR900160
  15. Lanzoni, S. (2000b). "Experiments on bar formation in a straight flume: 2. Garded sediment." Water Resources Research, AGU, Vol. 36, No. 11, pp. 3351-3363. https://doi.org/10.1029/2000WR900161
  16. Lee, K. S., and Jang, C.-L. (2018a). "Experimental analysis of the sedimentation processes in the movable weir by changing the channel slope considering weir operation." Journal of Korea Water Resources Association, KWRA, Vol. 51, No. 8, pp. 729-737. https://doi.org/10.3741/JKWRA.2018.51.8.729
  17. Lee, K. S., and Jang, C.-L. (2018b). "Experimental analysis of the sedimentation processes by variation of standing angle in the improved-pneumatic-movable weir." Journal of Korea Water Resources Association, KWRA, Vol. 51, No. 9, pp. 795-802. https://doi.org/10.3741/JKWRA.2018.51.9.795
  18. Morris, G. L., and Fan, J. (1997). Reservoir sedimentation Handbook: design and management of dams, reservoirs, and watersheds for sustainable use. McGraw-Hill, N.Y.
  19. Shimizu, Y., Fujita, M., and Hirano, M. (1999). "Calculation of flow and bed deformation in compound channel with a series of vertical drop spillways." Annual Journal of Hydraulic Engineering, J-STAGE, Vol. 43, pp. 683-688. https://doi.org/10.2208/prohe.43.683
  20. Struiksma, N., and Crosato, A. (1989). "Analysis of a 2 D bed topography model for rivers." River meandering, Edited by Ikeda, S., and Paker, G., Vol. 12., Water Resource Monograph, AGU, Wasing-ton, D.C., pp. 153-180.