Abstract
Crowdedness management at subway platforms is essential to improve services, including the prevention of train delays and ensuring passenger safety. Establishing effective crowdedness mitigation measures for platforms requires accurate estimation of the congestion level. There are temporal and spatial constraints since crowdedness on subway platforms is assessed at certain locations every 1-2 years by hand counting. However, smart cards generate real-time big data 24 hours a day and could be used in estimating congestion. This study proposes a model based on data from transit cards to estimate crowdedness dynamically. Crowdedness was defined as demand, which can be translated into passengers dynamically moving along a subway network. The trajectory of an individual passenger can be identified through this model. Passenger flow that concentrates or disperses at a platform is also calculated every minute. Lastly, the platform congestion level is estimated based on effective waiting areas for each platform structure.
지하철 승강장의 혼잡도 관리는 열차지연방지, 승객안전 등의 서비스수준 향상을 위해 중요하다. 승강장 혼잡개선정책을 효과적으로 수립하기 위해서는 혼잡수준을 정확하게 추정하는 방안이 필요하다. 현재 지하철 승강장 혼잡도는 1-2년 주기의 특정 장소 및 시간에 계수방법(Hand Count)로 측정되어 시공간적 제약이 존재한다. 한편 스마트카드자료는 매일 실시간 생성되는 빅데이터 자료로서 승강장혼잡 추정을 위한 기초자료로서 적합하다. 본 연구는 카드자료를 승강장 혼잡도를 동적으로 추정하는 모형을 제안한다. 연구는 우선 혼잡도를 지하철 네트워크를 동적으로 이동하는 승객이 승강장에 집중하는 수요개념으로 정의한다. 이를 위해 지하철 네트워크에서 개별승객이 동적으로 이동하는 궤적을 모형을 통하여 파악한다. 또한 지하철승강장에 집중 및 분산되는 승객흐름을 1분 단위로 산정한다. 마지막으로 승강장구조별 단위 실용대기면적에 따른 승강장 혼잡도를 계산한다.