DOI QR코드

DOI QR Code

Numerical Analysis of Orthotropic Composite Propellers

직교이방성 복합소재 프로펠러 수치해석

  • Kim, Ji-Hye (Department of Naval Architecture and Ocean Engineering, Chungnam National University) ;
  • Ahn, Byoung-Kwon (Department of Naval Architecture and Ocean Engineering, Chungnam National University) ;
  • Ruy, Won-Sun (Department of Naval Architecture and Ocean Engineering, Chungnam National University)
  • Received : 2019.01.15
  • Accepted : 2019.10.16
  • Published : 2019.10.31

Abstract

Flexible composite propellers have a relatively large deformation under heavy loading conditions. Thus, it is necessary to accurately predict the deformation of the blade through a fluid-structure interaction analysis. In this work, we present an LST-FEM method to predict the deformation of a flexible composite propeller. Here, we adopt an FEM solver called OOFEM to carry out a structural analysis with an orthotropic linear elastic composite material. In addition, we examine the influence of the lamination direction on the deformation of the flexible composite propeller.

Keywords

References

  1. Camanho, P., Lambert, M.A., 2006. A Design Methodology for Mechanically Fastened Joints in Laminated Composite Materials. Composites Science Tehcnology, 66(15), 3004-3020. https://doi.org/10.1016/j.compscitech.2006.02.017
  2. Chen, B., Neely, S., Michael, T., Gowing S., Szwerc, R., Buchler, D., Schult, R., 2006. Design, Fabrication and Testing of Pitch-Adapting(Flexible) Composite Propellers. Proceedings of the SNAME Propeller/Shafting Symposium, Williamsburg VA USA.
  3. Hong, Y., He, X.D., Wang, R.G., 2012. Vibration and Damping Analysis of a Composite Blade. Materials and Design, 34, 98-105. https://doi.org/10.1016/j.matdes.2011.07.033
  4. Hong, Y., Wilson, P.A., He, X.D., Wang, R.G., 2017. Numerical Analysis and Performance Comparison of the Same Series of Composite Propellers. Ocean Engineering, 144(1), 211-223. https://doi.org/10.1016/j.oceaneng.2017.08.036
  5. Jang, H.G., Nho, I.S., Hong, C.H., Lee, C.S., 2012. Design Algorithms of Flexible Propeller by Fluid-Structure Interactive Analysis. Journal of the Society of Naval Architects of Korea, 49(6), 528-533. https://doi.org/10.3744/SNAK.2012.49.6.528
  6. Kim, J.H., Ahn, B.K., Kim, G.D., Lee, C.S., 2018. Numerical Prediction of Hydroelastic Performance of the Flexible Composite Propeller. Proceedings of the 28th International Ocean and Polar Engineering Conference, Sapporo Japan.
  7. Lee, H., Song, M.C., Han, S., Chang, B.J., Suh, J.C., 2017. Hydro-elastic Aspects of a Composite Marine Propeller in Accordance with Ply Lamination Methods. Journal of Marine Science and Technology, 22(3), 479-493. https://doi.org/10.1007/s00773-016-0428-4
  8. Lin, G.F., 1991. Comparative Stress/Deflection Analysis of a Thick-Shell Composite Propeller Blade. David Taylor Research Center Technical Report, DTRC/SHD-1373-01.
  9. Lin, H.J., Lin, J.J., 1996. Nonlinear Hydroelastic Behavior of Propellers Using a Finite Element Method and Lifting Surface Theory. Journal of Marine Science and Technology, 1(2), 114-124. https://doi.org/10.1007/BF02391167
  10. Lin, H.J., Lin, J.J., Chuang, T.J., 2005. Strength Evaluation of a Composite Marine Propeller Blade. Journal of Reinforced Plastics and Composites, 24(17), 1791-1807. https://doi.org/10.1177/0731684405052199.
  11. Motley, M.R., Liu, Z., Young, Y.L., 2009. Utilizing Fluid-structure Interactions to Improve Energy Efficiency of Composite Marine Propellers in Spatially Varying Wake. Composite Structures, 90(3), 304-313. https://doi.org/10.1016/j.compstruct.2009.03.011.
  12. Motley, M.R., Young, Y.L., 2011. Performance-based Design and Analysis of Flexible Composite Propulsors. Journal of Fluids and Structures, 27, 1310-1325. https://doi.org/10.1016/j.jfluidstructs.2011.08.004
  13. Motley, M.R., Kramer, M.R., Young, Y.L., 2013. Free Surface and Solid Boundary Effects on the Free Vibration of Cantilevered Composite Plates. Composite Structures, 96, 365-375. https://doi.org/10.1016/j.compstruct.2012.09.023
  14. Mouritz, A.P., Gellert, E., Burchill, P., Challis, K., 2001. Review of Advanced Composite Structures for Naval Ships and Submarines. Composite Structure, 53(1), 21-41. https://doi.org/10.1016/S0263-8223(00)00175-6
  15. Nho, I.S., Lee, J.Y., Lee, H.Y., Lee, C.S., 2004. A Dynamic Structural Analysis System for Propeller Blades. Journal of the Society of Naval Architects of Korea, 41(2), 114-120. https://doi.org/10.3744/SNAK.2004.41.2.114
  16. Pagano, N., 1969. Exact Solution for Composite Laminates in Cylindrical Bending. Journal of Composite Materials, 3(3), 398-411. https://doi.org/10.1177/002199836900300304
  17. Patzak, B., 2012. OOFEM - An Object-oriented Simulation Tool for Advanced Modeling of Materials and Structures. Acta Polytechnica, 52(6), 59-66. https://doi.org/10.14311/1678
  18. Tenek, L.T., Argyris, J., 1998. Finite Element Analysis for Composite Structure. Kluwer Academic Publishers.
  19. Young, Y.L., 2008. Fluid-structure Interaction Analysis of Flexible Composite Marine Propellers. Journal of Fluids and Structures, 24(6), 799-818. https://doi.org/10.1016/j.jfluidstructs.2007.12.010.