DOI QR코드

DOI QR Code

The Regulatory Region of Muscle-Specific Alpha Actin 1 Drives Fluorescent Protein Expression in Olive Flounder Paralichthys olivaceus

  • Kong, Hee Jeong (Biotechnology Research Division, National Institute of Fisheries Science) ;
  • Kim, Julan (Biotechnology Research Division, National Institute of Fisheries Science) ;
  • Kim, Ju-Won (Biotechnology Research Division, National Institute of Fisheries Science) ;
  • Kim, Hyun-Chul (Genetics and Breeding Research Center, National Institute of Fisheries Science) ;
  • Noh, Jae Koo (Biotechnology Research Division, National Institute of Fisheries Science) ;
  • Kim, Young-Ok (Biotechnology Research Division, National Institute of Fisheries Science) ;
  • Kim, Woo-Jin (Genetics and Breeding Research Center, National Institute of Fisheries Science) ;
  • Yeo, Sang-Yeob (Division of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Park, Jung Youn (Biotechnology Research Division, National Institute of Fisheries Science)
  • 투고 : 2019.01.25
  • 심사 : 2019.03.09
  • 발행 : 2019.03.31

초록

To develop a promoter capable of driving transgene expression in non-model fish, we identified and characterized the muscle-specific alpha-actin gene in olive flounder, Paralichthys olivaceus (PoACTC1). The regulatory region of PoACTC1 includes putative regulatory elements such as a TATA box, two MyoD binding sites, three CArG boxes, and a CCAAT box. Microinjection experiments demonstrated that the regulatory region of PoACTC1, covering from -2,126 bp to +751 bp, just prior to the start codon, drove the expression of red fluorescent protein in developing zebrafish embryos and hatching olive flounder. These results suggest that the regulatory region of PoACTC1 may be useful in developing a promoter for biotechnological applications such as transgene expression in olive flounder.

키워드

참고문헌

  1. Beardmore JA (1997) Transgenics: Autotransgenics and allotransgenics. Transgenic Res 6:107-108. https://doi.org/10.1023/A:1018417519132
  2. Bunnell TM, Burbach BJ, Shimizu Y, Ervasti JM (2011) ${\beta}$-Actin specifically controls cell growth, migration, and the G-actin pool. Mol Biol Cell 22:4047-4058. https://doi.org/10.1091/mbc.e11-06-0582
  3. Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169-186. https://doi.org/10.1146/annurev-biophys-042910-155359
  4. Goto R, Saito T, Kawakami Y, Kitauchi T, Takagi M, Todo T, Arai K, Yamaha E (2015) Visualization of primordial germ cells in the fertilized pelagic eggs of the barfin flounder Verasper moseri. Int J Dev Biol 59:465-470. https://doi.org/10.1387/ijdb.150008rg
  5. Gustafson TA, Keds LH (1989) Identification of mutiple proteins that interact with functional regions of the human cardiac alpha-actin promoter. Mol Cell Biol 9: 3269-3283. https://doi.org/10.1128/MCB.9.8.3269
  6. Higashijima S, Okamoto H, Ueno N, Hotta Y, Eguchi G (1997) High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Dev Biol 192:289-299. https://doi.org/10.1006/dbio.1997.8779
  7. Kim S, Karsi A, Dunham RA, Liu Z (2000) The skeletal muscle alpha-actin gene of channel catfish (Ictalurus punctatus) and its association with piscine specific SINE elements. Gene 252:173-181. https://doi.org/10.1016/S0378-1119(00)00198-0
  8. Kim JE, Lee YM, Lee JH, Noh JK, Kim HC, Park CJ, Park JW, Kim KK (2014) Development and validation of single nucleotide polymorphism (SNP) Markers from an expressed sequence tag (EST) database in olive flounder (Paralichthys olivaceus). Dev Reprod 18:275-286. https://doi.org/10.12717/DR.2014.18.4.275
  9. Kong HJ, Lee YJ, Kim WJ, Kim HS, Kim BS, An CM, Yeo SY, Cho HK (2013) Molecular and functional analyses of the fast skeletal myosin light chain2 gene of the Korean oily bitterling, Acheilognathus koreensis. Int J Mol Sci 14:16672-16684. https://doi.org/10.3390/ijms140816672
  10. Krasnov A, Teerijoki H, Gorodilov Y, Molsa H (2003) Cloning of rainbow trout (Oncorhynchus mykiss) alpha-actin, myosin regulatory light chain genes and the 5'-flanking region of alpha-tropomyosin: Functional assessment of promoters. J Exp Biol 206:601-608. https://doi.org/10.1242/jeb.00116
  11. Kusakabe R, Kusakabe T, Suzuki N (1999) In vivo analysis of two striated muscle actin promoters reveals combinations of multiple regulatory modules required for skeletal and cardiac muscle-specific gene expression. Int J Dev Biol 43:541-554.
  12. Mclean N, Talwar S (1984) Injection of cloned genes into rainbow trout eggs. J Embyol Exp Morpholog 82:187.
  13. Minty A, Kedes L (1986) Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: Presence of an evolutionarily conserved repeated motif. Mol Cell Biol 6:2125-2136. https://doi.org/10.1128/MCB.6.6.2125
  14. Miwa T, Kedes L (1987) Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human alpha-cardiac actin gene. Mol Cell Biol 7:2803-2813. https://doi.org/10.1128/MCB.7.8.2803
  15. Moll R, Holzhausen H, Mennel HD, Kuhn C, Baumann R, Taege C, Franke WW (2006) The cardiac isoform of alpha-actin in regenerating and atrophic skeletal muscle, myopathies and rhabdomyomatous tumors: An immunohistochemical study using monoclonal antibodies. Virchows Arch 449:175-191. https://doi.org/10.1007/s00428-006-0220-7
  16. Sartorelli V, Webster KA, Kedes L (1990) Muscle-specific expression of the cardiac alpha-actin gene requires MyoD1, CArG-box binding factor, and Sp1. Genes Dev 4:1811-1822. https://doi.org/10.1101/gad.4.10.1811
  17. Shao C, Bao B, Xie Z, Chen X, Li B, Jia X, Yao Q, Orti G, Li W, Li X, Hamre K, Xu J, Wang L, Chen F, Tian Y, Schreiber AM, Wang N, Wei F, Zhang J, Dong Z, Gao L, Gai J, Sakamoto T, Mo S, Chen W, Shi Q, Li H, Xiu Y, Li Y, Xu W, Shi Z, Zhang G, Power DM, Wang Q, Schartl M, Chen S (2017) The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry. Nat Genet 49:119-124. https://doi.org/10.1038/ng.3732
  18. Stanke M, Tzvetkova A, Morgenstern B (2006) AUGUSTUS at EGASP: Using EST, protein and genomic alignments for improved gene prediction in the human genome. Genome Biol 7:S11. https://doi.org/10.1186/gb-2006-7-s1-s11
  19. Sakakura Y (2006) Larval fish behavior can be a predictable indicator for the quality of Japanese flounder seedlings for release. Aquaculture 257:316-320. https://doi.org/10.1016/j.aquaculture.2006.02.068
  20. Tonelli FMP, Lacerda SMSN, Tonelli FCP, Costa GMJ, de Franca LR, Resende RR (2017) Progress and biotechnological prospects in fish transgenesis. Biotechnol Adv 35:832-844. https://doi.org/10.1016/j.biotechadv.2017.06.002
  21. Venkatesh B, Tay BH, Elgar G, Brenner S (1996) Isolation, characterization and evolution of nine pufferfish (Fugu rubripes) actin genes. J Mol Biol 259:655-665. https://doi.org/10.1006/jmbi.1996.0347
  22. Westerfield M (1995) The zebrafish book: a guide for the laboratory use of zebrafish (Danio Rerio). Univ. of Oregon, Eugene, OR.