DOI QR코드

DOI QR Code

Visualization of Self-Healing Function of Protective Coating for Concrete

콘크리트 보호코팅재의 자기치유 기능의 시각화

  • Received : 2019.08.28
  • Accepted : 2019.10.20
  • Published : 2019.10.28

Abstract

Microcapsules were prepared by using a mixture of linseed oil and a small amount of fluorescent fluid as a core material. Self-healing protective coatings were prepared by applying coating formulations containing varying amounts of microcapsules on mortar surface. After scratch or crack was generated in the coating, when the damaged region was exposed to ultraviolet light (${\lambda}=365nm$), it was observed that fluorescence emission area increased with increasing microcapsule loading. In the cases of the self-healing coatings having 20wt% or more microcapsule loading, the damaged region was almost filled with the healing agent. In water sorptivity test, the self-healing coating having 20wt% or more microcapsule loading showed a healing efficiency of about 85%. The fluorescence emission from the damaged region was easily observed at a distance of 3 m. The self-healing protective coating is expected to be useful to confirm its self-healing function with the eye.

치유 물질인 아마인유에 형광 물질을 소량 혼합한 혼합물을 코어 성분으로 하여 마이크로캡슐을 제조하였다. 이 마이크로캡슐을 코팅재 조성물에 균일하게 분산시켜 모르타르 표면에 도포함으로써 지기치유 보호코팅재를 제작하였다. 이 코팅재에 약 $100{\mu}m$ 폭의 스크래치 또는 균열 손상을 발생시킨 후 자외선을 조사하면서 관찰한 결과, 캡슐 함량이 증가할수록 형광 발광의 범위가 증가하였고, 20wt% 이상의 캡슐을 함유한 코팅재에서는 손상 부위가 치유물질로 거의 채워진 모습을 나타내었다. 물흡수도 시험 결과 20wt% 이상의 캡슐을 함유한 코팅재는 약 85%의 치유효율을 보였다. 손상 부위에서 나타나는 형광은 3m의 거리에서도 용이하게 식별되었다. 본 연구결과는 콘크리트 보호를 위한 마이크로캡슐형 자기치유 코팅재의 치유기능을 육안으로 용이하게 확인하는데 도움을 줄 것으로 기대된다.

Keywords

References

  1. B. J. Blaiszik, S. L. B. Kramer, S. C. Olugebefola, J. S. Moore, N. R. Sottos & S. R. White (2010). Self-Healing Polymers and Composites. Annu. Rev. Mater. Res. 40, 179-211. 35, 263-269. DOI : 10.1016/0263-8223(96)00033-5
  2. L. L. Hia, V. Vahedi & P. (2016). Pasbakhsh, Self-Healing Polymer Composites: Prospects, Challenges, and Applications. Polym. Rev. 56, 225-261. https://doi.org/10.1080/15583724.2015.1106555
  3. M. Samadzadeh, S. H. Boura, M. Peikan, S. M. Kasiriha & Ashraf., (2010). A review on self-healing coatings based on micro/nanocapsules. Prog. Org. Coat. 68, 159-164. https://doi.org/10.1016/j.porgcoat.2010.01.006
  4. H. Wei, Y. Wang, J. Guo, N. Z. Shen, D. Jiang, X. Zhang, X. Yan, J. Zhu, Q. Wang, L. Shao, H. Lin, S. Wei & Z. Guo. (2015). Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. J. Mater. Chem. A 3, 469-480. https://doi.org/10.1039/C4TA04791E
  5. D. G. Shchukin, (2013). Container-based multifunctional self-healing polymer coatings. Polym. Chem. 4, 4871-4877. https://doi.org/10.1039/c3py00082f
  6. M. Hasanzadeh, M. Shahidi & M. Kazemipour, (2015). Application of EIS and EN techniques to investigate the self-healing ability of coatings based on microcapsules filled with linseed oil and CeO2 nanoparticles. Prog. Org. Coatings 80, 106-119. https://doi.org/10.1016/j.porgcoat.2014.12.002
  7. S. Lang & Q. Zhou. (2017). Synthesis and characterization of poly (urea-formaldehyde) microcapsules containing linseed oil for self-healing coating development. Prog. Org. Coatings 105, 99-110. https://doi.org/10.1016/j.porgcoat.2016.11.015
  8. M. Behzadnasab, S. M. Mirabedini, M. Esfandeh, & R. R. Farnood. (2017). Evaluation of corrosion performance of a self-healing epoxy-based coating containing linseed oil-filled microcapsules via electrochemical impedance spectroscopy. Prog. Org. Coatings 105, 212-224. https://doi.org/10.1016/j.porgcoat.2017.01.006
  9. D. M. Kim, I. H. Song, J. Y. Choi, S. W. Jin, K. N. Nam & C. M. Chung. (2018). Self-healing coatings based on linseed-oil-loaded microcapsules for protection of cementitious materials. Coatings 8, 404. https://doi.org/10.3390/coatings8110404
  10. H. I. Yang, D. M. Kim, H. C. Yu & C. M. Chung. (2016). Microcapsule-type organogel-based self-healing system having secondary damage preventing capability. ACS Appl. Mater. & Interfaces 8, 11070-11075. https://doi.org/10.1021/acsami.6b02118