References
- Abbasi, S., Farhatnia, F. and Jazi, S.R. (2014), "A semi-analytical solution on static analysis of circular plate exposed to nonuniform axisymmetric transverse loading resting on Winkler elastic foundation", Arch. Civil Mech. Eng., 14, 476-488. https://doi.org/10.1016/j.acme.2013.09.007
- Alibeigloo, A. (2018), "Thermo elasticity solution of functionally graded, solid, circular, and annular plates integrated with piezoelectric layers using the differential quadrature method", Mech. Advan. Mater. Struct., 25, 766-784. https://doi.org/10.1080/15376494.2017.1308585
- Asemi, S.R., Farajpour, A., Asemi, H.R. and Mohammadi, M. (2014), "Influence of initial stress on the vibration of doublepiezoelectric-nanoplate systems with various boundary conditions using DQM", Physica E, 63, 169-179. https://doi.org/10.1016/j.physe.2014.05.009
- Barati, M.R. (2017a), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Struct., Int. J., 5, 393-414. https://doi.org/10.12989/anr.2017.5.4.393
- Barati, M.R. (2017b), "Nonlocal microstructure-dependent dynamic stability of refined porous FG nanoplates in hygrothermal environments", Eur. Phys. J. Plus, 132, 434-444. https://doi.org/10.1140/epjp/i2017-11686-2
- Bahrami, A. and Teimourian, A. (2017), "Small scale effect on vibration and wave power reflection in circular annular nanoplates", Compos. Part B: Eng., 109, 214-226. https://doi.org/10.1016/j.compositesb.2016.09.107
- Bedroud, M., Nazemnezhad, R., Hosseini-Hashemi, Sh. and Valixani, M. (2016), "Buckling of FG circular/annular Mindlin nanoplates with an internal ring support using nonlocal elasticity", Appl. Math. Model., 40, 3185-3210. https://doi.org/10.1016/j.apm.2015.09.003
- Bellman, R. and Casti, J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34, 235-238. https://doi.org/10.1016/0022-247X(71)90110-7
- Chakraverty, S. and Behera, L. (2016), Static and Dynamic Problems of nanobeams and nanoplates, National Institute of Technology Rourkela, India.
- Chan, D.Q., Anh, V.T.T. and Duc, N.D. (2019), "Vibration and nonlinear dynamic response of eccentrically stiffened functionally graded composite truncated conical shells in thermal environments", Acta Mech., 230, 157-178. https://doi.org/10.1007/s00707-018-2282-4
- Dastjerdi, Sh., Jabbarzadeh, M. and Aliabadi, Sh. (2016), "Nonlinear static analysis of single layer annular/circular graphene sheets embedded in Winkler-Pasternak elastic matrix based on non-local theory of Eringen", Ain Shams Eng. J., 7, 873-884. https://doi.org/10.1007/s00707-018-2282-4
- Duc, N.D. (2013), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", Compos. Struct., 99, 88-96. https://doi.org/10.1016/j.compstruct.2012.11.017
- Duc, N.D. (2016), "Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy's third-order shear deformation shell theory", Eur. J. Mech. - A/Solids, 58, 10-30. https://doi.org/10.1016/j.euromechsol.2016.01.004
- Duc, N.D., Khoa, N.D. and Thiem, H.T. (2018), "Nonlinear thermo-mechanical response of eccentrically stiffened Sigmoid FGM circular cylindrical shells subjected to compressive and uniform radial loads using the Reddy's third-order shear deformation shell theory", Mech. Adv. Mater. Struct., 25, 1157-1167. https://doi.org/10.1080/15376494.2017.1341581
- Ebrahimi, F. and Heidari, E. (2017), "Surface effects on nonlinear vibration of embedded functionally graded nanoplates via higher order shear deformation plate theory", Mech. Adv. Mat. Struct., 26(8), 671-699. https://doi.org/10.1080/15376494.2017.1410908
- Ebrahimi, F. and Heidari, E. (2018), "Vibration characteristics of advanced nanoplates in humid-thermal environment incorporating surface elasticity effects via differential quadrature method", Struct. Eng. Mech., Int. J., 68(1), 131-157. https://doi.org/10.12989/sem.2018.68.1.131
- Farhatnia, F., Ghanbari-Mobarakeh, M., Rasouli-Jazi, S. and Oveissi, S. (2017), "Thermal buckling analysis of functionally graded circular plate resting on the pasternak elastic foundation via the differential transform method", Facta Universitatis, Series: Mech. Eng., 15, 545-563. https://doi.org/10.22190/FUME170104004F
- Farhatnia, F., Babaei, J. and Foroudastan, R. (2018), "Thermo-Mechanical nonlinear bending analysis of functionally graded thick circular plates resting on Winkler foundation based on sinusoidal shear deformation theory", Arab. J. Sci. Eng., 43, 1137-1151. https://doi.org/10.1007/s13369-017-2753-2
- Ghadiri, M., Shafiei, N. and Alavi, H. (2017), "Thermomechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24, 636-646. https://doi.org/10.1080/15376494.2016.1196770
- Golmakani, M.E. and Kadkhodayan, M. (2011), "Nonlinear bending analysis of annular FGM plates using higher-order shear deformation plate theories", Compos. Struct., 93, 973-982. https://doi.org/10.1016/j.compstruct.2010.06.024
- Golmakani, M.E. and Vahabi, H. (2017), "Nonlocal buckling analysis of functionally graded annular nanoplates in an elastic medium with various boundary conditions", Microsyst. Technol., 23, 3613-3628. https://doi.org/10.1007/s00542-016-3210-y
- Hajmohammad, M.H., Zarei, M.Sh., Sepehr, M. and Abtahi, N. (2018), "Bending and buckling analysis of functionally graded annular microplate integrated with piezoelectric layers based on layerwise theory using DQM", Aerosp. Sci. Technol., 79, 679-688. https://doi.org/10.1016/j.ast.2018.05.055
- Jung, W.Y., Han, S.Ch. and Park, W.T. (2014), "A modified couple stress theory for buckling analysis of S-FGM nanoplates embedded in Pasternak elastic medium", Compos.: Part B, 60, 746-756. https://doi.org/10.1016/j.compositesb.2013.12.058
- Karami, B. and Janghorban, M. (2016), "Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory", Modern Phys. Lett. B, 30, 1650421, 17 pages. https://doi.org/10.1142/S0217984916504212
- Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099
- Karimi, M. and Shahidi, A.R. (2017), "Thermo-mechanical vibration, buckling, and bending of orthotropic graphene sheets based on nonlocal two-variable refined plate theory using finite difference method considering surface energy effects", Proc. IMechE Part N: J. Nanomater., Nanoeng. Nanosyst., 231, 111-130. https://doi.org/10.1177/2397791417719970
- Karlicic, D., Murmu, T., Adhikari, S. and McCarthy, M. (2015), Non-local Structural Mechanics, John Wiley & Sons, USA.
- Limkatanyu, S., Prachasaree, W., Damrongwiriyanupap, N., Kwon, M. and Jung, W. (2013), "Exact stiffness for beams on Kerr-Type foundation: the virtual force approach", J. Appl. Mathemat., 13, 626287, 13 pages. http://dx.doi.org/10.1155/2013/626287
- Narendar, S. (2011), "Buckling analysis of micro-/nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects", Compos. Struct., 93, 3093-3103. https://doi.org/10.1016/j.compstruct.2011.06.028
- Narendar, S. and Gopalakrishnan, S. (2012), "Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory", Acta Mech., 223, 395-413. https://doi.org/10.1007/s00707-011-0560-5
- Ma, L.S. and Wang, T.J. (2004), "Relationship between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory", Int. J. Solids Struct., 41, 85-101. https://doi.org/10.1016/j.ijsolstr.2003.09.008
- Malekzadeh, P. and Shojaee, M. (2013a), "A two-variable firstorder shear deformation theory coupled with surface and nonlocal effects for free vibration of nanoplates", J. Vib. Cont., 21, 2755-2772. https://doi.org/10.1177/1077546313516667
- Malekzadeh, P. and Shojaee, M. (2013b), "Free vibration of nanoplates based on a nonlocal two-variable refined plate theory", Compos. Struct., 95, 443-452. https://doi.org/10.1016/j.compstruct.2012.07.006
- Mecha, I., Mechab, B., Benaissa, S., Serier, B. and Bachir Bouiadjra, B. (2016), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Brazil. Soc. Mech. Sci. Eng., 38, 2193-2211. https://doi.org/10.1007/s40430-015-0482-6
- Paliwal, D.N. and Ghosh, S.K. (2014), "Stability of orthotropic plates on a Kerr foundation", AIAA J., 38, 1994-1997. https://doi.org/10.2514/2.859
- Phadikar, J.K. and Pradhan, S.C. (2010), "Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates", Computat. Mat. Sci., 49, 492-499. https://doi.org/10.1016/j.commatsci.2010.05.040
- Poodeh, F., Farhatnia, F. and Raeesi, M. (2018), "Buckling analysis of orthotropic thin rectangular plates subjected to nonlinear in-plane distributed loads using generalized differential quadrature method", Int. J. Computat. Meth. Eng. Sci. Mech., 19, 102-116. https://doi.org/10.1080/15502287.2018.1430077
- Quan, T.Q., Tran, P., Tuan, N.D. and Duc, N.D. (2015), "Nonlinear dynamic analysis and vibration of shear deformable eccentrically stiffened S-FGM cylindrical panels with metal-ceramic-metal layers resting on elastic foundations", Compos. Struct., 126, 16-33. https://doi.org/10.1016/j.compstruct.2015.02.056
- Rajasekaran, S. (2017), "Analysis of non-homogeneous orthotropic plates using EDQM", Struct. Eng. Mech., Int. J., 61(2), 295-316. https://doi.org/10.12989/sem.2017.61.2.295
- Rahimi Pour, H., Vossough, H., Heydari, M.M., Beygipoor, Gh. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using Differential quadrature method", Struct. Eng. Mech., Int. J., 54(6), 1063-1071. https://doi.org/10.12989/sem.2015.54.6.1061
- Reddy, J.N., Wang, C.M. and Kitipornchai, S. (1999), "Axisymmetric bending of functionally graded circular and annular plates", Eur. J. Mech. A - Solids, 18, 185-199. https://doi.org/10.1016/S0997-7538(99)80011-4
- Rezaei, A.S. and Saidi, A.R. (2018), "An analytical study on the free vibration of moderately thick fluid-infiltrated porous annular sector plates", J. Vib. Cont., 24, 4130-4144. https://doi.org/10.1177/1077546317721416
- Robinson, M.T.A. (2018), "Analysis of the vibration of axially moving viscoelastic plate with free edges using differential quadrature method", J. Vib. Control, 24(17), 3908-3919. https://doi.org/10.1177/1077546317716316
- Saidi, A.R., Rasouli, A. and Sahraee, S. (2009), "Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory", Compos. Struct., 89, 110-119. https://doi.org/10.1016/j.compstruct.2008.07.003
- Shahsavari, D., Karami, B. and Li, L. (2018), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., Int. J., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053
- Shimpi, R.P. and Patel, H.G. (2006), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solids Struct., 43, 6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007
- Shokrani, M.H., Karimi, M., Salmani Tehrani, M. and Mirdamadi, H.R. (2016), "Buckling analysis of double-orthotropic nanoplates embedded in elastic media based on non-local twovariable refined plate theory using the GDQ method", J. Brazil. Soc. Mech. Sci. Eng., 38, 2589-2606. https://doi.org/10.1007/s40430-015-0370-0
- Sobhy, M. (2016), "Hygrothermal vibration of orthotropic doublelayered graphene sheets embedded in an elastic medium using the two-variable plate theory", Appl. Math. Model., 40, 85-99. https://doi.org/10.1016/j.apm.2015.04.037
- Sobhy, M. (2017), "Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory", Struct. Eng. Mech., Int. J., 63(3), 401-415. https://doi.org/10.12989/sem.2017.63.3.401
- Teifouet, M. and Robinson, A. (2017), "Analysis of the vibration of axially moving viscoelastic plate with free edges using differential quadrature method", J. Vib. Cont., 24, 3908-3919. https://doi.org/10.1177/1077546317716316
- Xu, W., Wang, L. and Jiang, J. (2016), "Strain gradient finite element analysis on the vibration of double-layered graphene sheets", Int. J. Computat. Meth., 13, 1650011, 18 pages. https://doi.org/10.1142/S0219876216500110
Cited by
- On bending analysis of perforated microbeams including the microstructure effects vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.765
- Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157
- Nonlinear Analyses of Porous Functionally Graded Sandwich Piezoelectric Nano-Energy Harvesters under Compressive Axial Loading vol.11, pp.24, 2019, https://doi.org/10.3390/app112411787