과제정보
연구 과제 주관 기관 : Hunan Provincial Innovation Foundation
참고문헌
- Allahyari, E. and Kiani, A. (2018), "Employing an analytical approach to study the thermo-mechanical vibration of a defective size-dependent graphene nanosheet", Eur. Phys. J. Plus., 133(6), 223. https://doi.org/10.1140/epjp/i2018-12058-2
- Apuzzo, A., Barretta, R., Faghidian, S.A., Luciano, R. and de Sciarra, F.M. (2018), "Free vibrations of elastic beams by modified nonlocal strain gradient theory", Int. J. Eng. Sci., 133, 99-108. https://doi.org/10.1016/j.ijengsci.2018.09.002
- Bao, W., Miao, F., Chen, Z., Zhang, H., Jang, W., Dames, C. and Lau, C.N. (2009), "Controlled ripple texturing of suspended graphene and ultrathin graphite membranes", Nature Nanotechnol., 4, 562-566. https://doi.org/10.1038/nnano.2009.191
- Barati, M.R. (2017), "A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous nanoporous plates", Eur. J. Mech. A-Solid., 67, 215-230. https://doi.org/10.1016/j.euromechsol.2017.09.001
- Barati, M.R. and Zenkour, A.M. (2017a), "Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection", Compos. Struct., 181, 194-202. https://doi.org/10.1016/j.compstruct.2017.08.082
- Barati, M.R. and Zenkour, A.M. (2017b), "Investigating postbuckling of geometrically imperfect metal foam nanobeams with symmetric and asymmetric porosity distributions", Compos. Struct., 182, 91-98. https://doi.org/10.1016/j.compstruct.2017.09.008
- Barati, M.R. and Zenkour, A.M. (2018a), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct., 26(18), 1580-1588. https://doi.org/10.1080/15376494.2018.1444235
- Barati, M.R. and Zenkour, A.M. (2018b), "Post-buckling analysis of imperfect multi-phase nanocrystalline nanobeams considering nanograins and nanopores surface effects", Compos. Struct., 184, 497-505. https://doi.org/10.1016/j.compstruct.2017.10.019
- Barati, M.R. and Zenkour, A.M. (2018c), "Thermal post-buckling analysis of closed circuit flexoelectric nanobeams with surface effects and geometrical imperfection", Mech. Adv. Mater. Struct., 26(17), 1482-1490. https://doi.org/10.1080/15376494.2018.1432821
- Barati, M.R. and Zenkour, A.M. (2018d), "Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection", Mech. Adv. Mater. Struct., 26(6), 503-511. https://doi.org/10.1080/15376494.2017.1400622
- Barati, M.R. and Zenkour, A.M. (2019), "Analysis of postbuckling behavior of general higher-order functionally graded nanoplates with geometrical imperfection considering porosity distributions", Mech. Adv. Mater. Struct., 26(12), 1081-1088. https://doi.org/10.1080/15376494.2018.1430280
- Barretta, R. and Sciarra, F.M.D. (2018), "Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams", Int. J. Eng. Sci., 130, 187-198. https://doi.org/10.1016/j.ijengsci.2018.05.009
- Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable mode", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
- Christy, P.A., Peter, A.J. and Lee, C.W. (2018), "Density functional theory on 13C NMR chemical shifts of fullerene", Solid State Commun., 283, 22-26. https://doi.org/10.1016/j.ssc.2018.08.001
- Cong, P.H. and Duc, N.D. (2018), "New approach to investigate the nonlinear dynamic response and vibration of a functionally graded multilayer graphene nanocomposite plate on a viscoelastic Pasternak medium in a thermal environment", Acta Mech., 229(9), 3651-3670. https://doi.org/10.1007/s00707-018-2178-3
- Ebrahimi, F. and Barati, M.R. (2016), "Vibration analysis of piezoelectrically actuated curved nanosize fg beams via a nonlocal strain-electric field gradient theory", Mech. Adv. Mater. Struct., 25(4), 350-359. https://doi.org/10.1080/15376494.2016.1255830
- Ebrahimi, F. and Barati, M.R. (2017), "Hygrothermal effects on vibration characteristics of viscoelastic fg nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092
- Ebrahimi, F. and Barati, M.R. (2018a), "Damping vibration analysis of graphene sheets on viscoelastic medium incorporating hygro-thermal effects employing nonlocal strain gradient theory", Compos. Struct., 185, 241-253. https://doi.org/10.1016/j.compstruct.2017.10.021
- Ebrahimi, F. and Barati, M.R. (2018b), "Vibration analysis of biaxially compressed double-layered graphene sheets based on nonlocal strain gradient theory", Mech. Adv. Mater. Struct., 26(10), 854-865. https://doi.org/10.1080/15376494.2018.1430267
- Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
- Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007
- Farokhi, H. and Ghayesh, M.H. (2015), "Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory", Int. J. Mech. Sci., 90, 133-144. https://doi.org/10.1016/j.ijmecsci.2014.11.002
- Farokhi, H. and Ghayesh, M.H. (2017), "Nonlinear resonant response of imperfect extensible Timoshenko microbeams", Int. J. Mech. Mater. Des., 13(1), 43-55. https://doi.org/10.1007/s10999-015-9316-z
- Farokhi, H. and Ghayesh, M.H. (2018a), "Supercritical nonlinear parametric dynamics of Timoshenko microbeams", Commun. Nonlinear Sci., 59, 592-605. https://doi.org/10.1016/j.cnsns.2017.11.033
- Farokhi, H. and Ghayesh, M.H. (2018b), "Nonlinear mechanics of electrically actuated microplates", Int. J. Eng. Sci., 123, 197-213. https://doi.org/10.1016/j.ijengsci.2017.08.017
- Farokhi, H., Ghayesh, M.H. and Amabili, M. (2013), "Nonlinear resonant behavior of microbeams over the buckled state", Appl. Phys. A., 113, 297-307. https://doi.org/10.1007/s00339-013-7894-x
- Farokhi, H., Ghayesh, M.H. and Hussain, S. (2016), "Largeamplitude dynamical behaviour of microcantilevers", Int. J. Eng. Sci., 106, 29-41. https://doi.org/10.1016/j.ijengsci.2016.03.002
- Fasolino, A., Los, J.H. and Katsnelson, M.I. (2007), "Intrinsic ripples in graphene", Nature Mater., 6, 858-861. https://doi.org/10.1038/nmat2011
- Ghavanloo, E. (2017), "Axisymmetric deformation of geometrically imperfect circular graphene sheets", Acta Mech., 228(9), 3297-3305. https://doi.org/10.1007/s00707-017-1891-7
- Ghayesh, M.H. (2013), "Subharmonic dynamics of an axially accelerating beam", Arch App. Mech., 82(9), 1169-1181. https://doi.org/10.1007/s00419-012-0609-5
- Ghayesh, M.H. (2018a), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004
- Ghayesh, M.H. (2018b), "Functionally graded microbeams: Simultaneous presence of imperfection and viscoelasticity", Int. J. Mech. Sci., 140, 339-350. https://doi.org/10.1016/j.ijmecsci.2018.02.037
- Ghayesh, M.H. (2018c), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Model., 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017
- Ghayesh, M.H. (2019a), "Viscoelastic dynamics of axially FG microbeams", Int. J. Eng. Sci., 135, 75-85. https://doi.org/10.1016/j.ijengsci.2018.10.005
- Ghayesh, M.H. (2019b), "Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams", Compos. Struct., 225, 110974. https://doi.org/10.1016/j.compstruct.2019.110974
- Ghayesh, M.H. (2019c), "Mechanics of viscoelastic functionally graded microcantilevers", Eur. J. Mech. A/Solid., 73, 492-499. https://doi.org/10.1016/j.euromechsol.2018.09.001
- Ghayesh, M.H. (2019d), "Asymmetric viscoelastic nonlinear vibrations of imperfect AFG beams", Appl. Acoust., 154, 121-128. https://doi.org/10.1016/j.apacoust.2019.03.022
- Ghayesh, M.H. (2019e), "Nonlinear oscillations of FG cantilevers", Appl. Acoust., 145, 393-398. https://doi.org/10.1016/j.apacoust.2018.08.014
- Ghayesh, M.H. (2019f), "Resonant vibrations of FG viscoelastic imperfect Timoshenko beams", J. Vib. Control, 25(12), 1823-1832. https://doi.org/10.1177/1077546318825167
- Ghayesh, M.H. (2019g), "Viscoelastic nonlinear dynamic behaviour of Timoshenko FG beams", Eur. Phys. J. Plus, 134, 401. https://doi.org/10.1140/epjp/i2019-12472-x
- Ghayesh, M.H. and Farokhi, H. (2015), "Chaotic motion of a parametrically excited microbeam", Int. J. Eng. Sci., 96, 34-45. https://doi.org/10.1016/j.ijengsci.2015.07.004
- Ghayesh, M.H. and Moradian, N. (2011), "Nonlinear dynamic response of axially moving, stretched viscoelastic strings", Arch. App. Mech., 81, 781-799. https://doi.org/10.1007/s00419-010-0446-3
- Ghayesh, M.H., Yourdkhani, M., Balar, S. and Reid, T. (2010), "Vibrations and stability of axially traveling laminated beams", Appl. Math. Compos., 217(2), 545-556. https://doi.org/10.1016/j.amc.2010.05.088
- Ghayesh, M.H., Kazemirad, S. and Darabi, M.A. (2011), "A general solution procedure for vibrations of systems with cubic nonlinearities and nonlinear/time-dependent internal boundary conditions", J. Sound Vib., 330(22), 5382-5400. https://doi.org/10.1016/j.jsv.2011.06.001
- Ghayesh, M.H., Kazemirad, S. and Reid, T. (2012), "Nonlinear vibrations and stability of parametrically exited systems with cubic nonlinearities and internal boundary conditions: A general solution procedure", Appl. Math. Model., 36(7), 3299-3311. https://doi.org/10.1016/j.apm.2011.09.084
- Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013a), "Coupled global dynamics of an axially moving viscoelastic beam", Int. J. Non-linear Mech., 51, 54-74. https://doi.org/10.1016/j.ijnonlinmec.2012.12.008
- Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013b), "Threedimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.003
- Ghayesh, M.H., Farokhi, H. and Alici, G. (2016), "Size-dependent performance of microgyroscopes", Int. J. Eng. Sci., 100, 99-111. https://doi.org/10.1016/j.ijengsci.2015.11.003
- Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017), "Vibration analysis of geometrically imperfect three-layered sheardeformable microbeams", Int. J. Mech. Sci., 122, 370-383. https://doi.org/10.1016/j.ijmecsci.2017.01.001
- Gholipour, A., Farokhi, H. and Ghayesh, M.H. (2015), "In-plane and out-of-plane nonlinear size-dependent dynamics of microplates", Nonlinear Dyn., 79, 1771-1785. https://doi.org/10.1007/s11071-014-1773-7
- Guo, H., Cao, S., Yang, T. and Chen, Y. (2018), "Vibration of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method", Int. J. Mech. Sci., 142, 610-621. https://doi.org/10.1016/j.ijmecsci.2018.05.029
- Hashemi, S.H. and Samaei, A.T. (2011), "Buckling analysis of micro/nanoscale plates via nonlocal elasticity theory", Physica E, 43(7), 1400-1404. https://doi.org/10.1016/j.physe.2011.03.012
- Hosseini, S.M. and Zhang, C. (2018), "Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel Compos. Struct., Int. J., 27(3), 255-271. https://doi.org/10.12989/scs.2018.27.3.255
- Hosseini, M., Gorgani, H.H., Shishesaz, M. and Hadi, A. (2017), "Size-dependent stress analysis of single-wall carbon nanotube based on strain gradient theory", Int. J. App. Mech., 9(6), 1750087. https://doi.org/10.1142/S1758825117500879
- Hussein, A. and Kim, B. (2018), "Graphene/polymer nanocomposites: The active role of the matrix in stiffening mechanics", Compos. Struct., 202, 170-181. https://doi.org/10.1016/j.compstruct.2018.01.023
- Karami, B., Janghorban, M. and Li, L. (2018), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronaut., 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011
- Kazemirad, S., Ghayesh, M.H. and Amabili, M. (2012), "Thermomechanical nonlinear dynamics of a buckled axially moving beam", Arch App. Mech., 83(1), 25-42. https://doi.org/10.1007/s00419-012-0630-8
- Kiani, Y. (2017), "Isogeometric large amplitude free vibration of graphene reinforced laminated plates in thermal environment using NURBS formulation", Comput. Method. Appl. M., 332, 86-101. https://doi.org/10.1016/j.cma.2017.12.015
- Korobeynikov, S.N., Alyokhin, V.V. and Babichev, A.V. (2018), "On the molecular mechanics of single layer graphene sheets", Int. J. Eng. Sci., 133, 109-131. https://doi.org/10.1016/j.ijengsci.2018.09.001
- Kumar, D. and Srivastava, A. (2016), "Elastic properties of CNTand graphene-reinforced nanocomposites using RVE", Steel Compos. Struct., Int. J., 21(5), 1085-1103. https://doi.org/10.12989/scs.2016.21.5.1085
- Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
- Liu, H., Lv, Z. and Wu, H. (2018), "Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory", Compos. Struct., 214, 47-61. https://doi.org/10.1016/j.compstruct.2019.01.090
- Lu, L., Guo, X. and Zhao, J. (2017a), "A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms", Int. J. Eng. Sci., 119, 265-277. https://doi.org/10.1016/j.ijengsci.2017.06.024
- Lu, L., Guo, X. and Zhao, J. (2017b), "Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory", Int. J. Eng. Sci., 116, 12-24. https://doi.org/10.1016/j.ijengsci.2017.03.006
- Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solid., 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
- Malikan, M. and Nguyen, V.B. (2018), "Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory", Physica E., 102, 8-28. https://doi.org/10.1016/j.physe.2018.04.018
- Malikan, M., Nguyen, V.B. and Tornabene, F. (2018), "Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory", Mater. Res. Express, 5(7), 075031. https://doi.org/10.1088/2053-1591/aad144
- Mcfarland, A.W. and Colton, J.S. (2005), "Role of material microstructure in plate stiffness with relevance to microcantilever sensors", J. Micromech. Microeng., 15(5), 1060-1067. https://doi.org/10.1088/0960-1317/15/5/024
- Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J. and Roth, S. (2007), "The structure of suspended graphene sheets", Nature, 446, 60-63. https://doi.org/10.1038/nature05545
- Mirjavadi, S.S., Forsat, M., Barati, M.R., Abdella, G.M., Hamouda, A.M.S., Afshari, B.M. and Rabby, S. (2018a), "Postbuckling analysis of piezo-magnetic nanobeams with geometrical imperfection and different piezoelectric contents", Microsyst. Technol., 25(9), 3477-3488. https://doi.org/10.1007/s00542-018-4241-3
- Mirjavadi, S.S., Afshari, B.M., Barati, M.R. and Hamouda, A.M.S. (2018b), "Transient response of porous fg nanoplates subjected to various pulse loads based on nonlocal stress-strain gradient theory", Eur. J. Mech. A-Solid., 74, 210-220. https://doi.org/10.1016/j.euromechsol.2018.11.004
- Mirjavadi, S.S., Forsat, M., Hamouda, A.M.S. and Barati, M.R. (2019), "Dynamic response of functionally graded graphene nanoplatelet reinforced shells with porosity distributions under transverse dynamic loads", Mater. Res. Express, 6(7), 075045. https://doi.org/10.1088/2053-1591/ab1552
- Nematollahi, M.S. and Mohammadi, H. (2019), "Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory", Int. J. Mech. Sci., 156, 31-45. https://doi.org/10.1016/j.ijmecsci.2019.03.022
- Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004), "Electric field effect in atomically thin carbon films", Science, 306(5696), 666-669. https://doi.org/10.1126/science.1102896
- Pradhan, S.C. (2009), "Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory", Phys. Lett. A, 373(45), 4182-4188. https://doi.org/10.1016/j.physleta.2009.09.021
- Pradhan, S.C. and Murmu, T. (2009), "Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics", Compos. Mater. Sci., 47(1), 268-274. https://doi.org/10.1016/j.commatsci.2009.08.001
- Sadeghirad, A., Su, N. and Liu, F. (2015), "Mechanical modeling of graphene using the three-layer-mesh bridging domain method", Comput. Method. Appl. Mech. Eng., 294, 278-298. https://doi.org/10.1016/j.cma.2015.06.001
- Sahmani, S. and Aghdam, M.M. (2017a), "Nonlinear instability of hydrostatic pressurized hybrid FGM exponential shear deformable nanoshells based on nonlocal continuum elasticity", Compos. Part B: Eng., 114, 404-417. https://doi.org/10.1016/j.compositesb.2017.01.038
- Sahmani, S. and Aghdam, M.M. (2017b), "Nonlocal strain gradient shell model for axial buckling and postbuckling analysis of magneto-electro-elastic composite nanoshells", Compos. Part B Eng., 132, 258-274. https://doi.org/10.1016/j.compositesb.2017.09.004
- Sahmani, S., Bahrami, M. and Aghdam, M.M. (2015), "Surface stress effects on the postbuckling behavior of geometrically imperfect cylindrical nanoshells subjected to combined axial and radial compressions", Int. J. Mech. Sci., 100, 1-22. https://doi.org/10.1016/j.ijmecsci.2015.06.004
- Sahmani, S., Bahrami, M. and Aghdam, M.M. (2016), "Surface stress effects on the nonlinear postbuckling characteristics of geometrically imperfect cylindrical nanoshells subjected to axial compression", Int. J. Eng. Sci., 99, 92-106. https://doi.org/10.1016/j.ijengsci.2015.10.010
- Shafiei, N. and She, G.L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004
- Shahsavari, D., Karami, B. and Mansouri, S. (2017), "Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories", Eur. J. Mech. A-Solid., 67(C), 200-214. https://doi.org/10.1016/j.euromechsol.2017.09.004
- Shahsavari, D., Karami, B., Fahham, H.R. and Li, L. (2018), "On the shear buckling of porous nanoplates using a new sizedependent quasi-3d shear deformation theory", Acta Mech., 229(11), 4549-4573. https://doi.org/10.1007/s00707-018-2247-7
- She, G.L., Yuan, F.G. and Ren, Y.R. (2017a), "Nonlinear analysis of bending, thermal buckling and post-buckling for functionally graded tubes by using a refined beam theory", Compos. Struct., 165, 74-82. https://doi.org/10.1016/j.compstruct.2017.01.013
- She, G.L., Yuan, F.G., Ren, Y.R. and Xiao, W.S. (2017b), "On buckling and postbuckling behavior of nanotubes", Int. J. Eng. Sci., 121, 130-142. https://doi.org/10.1016/j.ijengsci.2017.09.005
- She, G.L., Yuan, F.G. and Ren, Y.R. (2017c), "Research on nonlinear bending behaviors of FGM infinite cylindrical shallow shells resting on elastic foundations in thermal environments", Compos. Struct., 170, 111-121. https://doi.org/10.1016/j.compstruct.2017.03.010
- She, G.L., Yuan, F.G. and Ren, Y.R. (2017d), "Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory", Appl. Math. Model., 47, 340-357. https://doi.org/10.1016/j.apm.2017.03.014
- She, G.L., Yuan, F.G., Karami, B., Ren, Y.R. and Xiao, W.S. (2019), "On nonlinear bending behavior of FG porous curved nanotubes", Int. J. Eng. Sci., 135, 58-74. https://doi.org/10.1016/j.ijengsci.2018.11.005
- Shen, H.S. (2007), "Thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent properties", Int. J. Mech. Sci., 49(4), 466-478. https://doi.org/10.1016/j.ijmecsci.2006.09.011
- Shen, H.S. (2013), A two-step perturbation method in nonlinear analysis of beams, plates and shells, Higher Education Press.
- Shen, H.S. and Zhang, J.W. (1988), "Perturbation analyses for the postbuckling of simply supported rectangular plates under uniaxial compression", App. Math. Mech., 9(8), 793-804. https://doi.org/10.1007/BF02465403
- Shen, H.S., Xiang, Y., Lin, F. and Hui, D. (2017), "Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments", Compos. Part B Eng., 119, 67-78. https://doi.org/10.1016/j.compositesb.2017.03.020
- Shen, H.S., Xiang, Y., Fan, Y. and Hui, D. (2018), "Nonlinear bending analysis of FG-GRC laminated cylindrical panels on elastic foundations in thermal environments", Compos. Part B: Eng., 15, 148-157. https://doi.org/10.1016/j.compositesb.2017.12.048
- Singh, S. and Patel, B.P. (2018), "A computationally efficient multiscale finite element formulation for dynamic and postbuckling analyses of carbon nanotubes", Comput. Struct., 195, 126-144. https://doi.org/10.1016/j.compstruc.2017.10.003
- Soleimani, A., Dastani, K., Hadi, A. and Naei, M.H. (2019), "Effect of out-of-plane defects on the postbuckling behavior of graphene sheets based on nonlocal elasticity theory", Steel Compos. Struct., Int. J., 30(6), 517-534. https://doi.org/10.12989/scs.2019.30.6.517
- Tahouneh, V., Naei, M.H. and Mashhadi, M.M. (2018), "The effects of temperature and vacancy defect on the severity of the SLGS becoming anisotropic", Steel Compos. Struct., Int. J., 29, 647-657. https://doi.org/10.12989/scs.2018.29.5.647
- Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98, 124301. https://doi.org/10.1063/1.2141648
- Wang, J., Xie, H. and Guo, Z. (2017), "First-principles investigation on thermal properties and infrared spectra of imperfect graphene", Appl. Therm. Eng., 116, 456-462. https://doi.org/10.1016/j.applthermaleng.2016.12.087
- Wang, Y., Feng, C., Zhao, Z. and Yang, J. (2018), "Eigenvalue buckling of functionally graded cylindrical shells reinforced with graphene platelets (GPL)", Compos. Struct., 202, 38-46. https://doi.org/10.1016/j.compstruct.2017.10.005
- Wu, C.P. and Chen, Y.J. (2018), "Cylindrical Bending Vibration of Multiple Graphene Sheet Systems Embedded in an Elastic Medium", Int. J. Struct. Stab. Dyn., 19(4), 1950035. https://doi.org/10.1142/S0219455419500354
- Wu, X., Mu, F., Wang, Y. and Zhao, H. (2018), "Application of atomic simulation methods on the study of graphene nanostructure fabrication by particle beam irradiation: A review", Compos. Mater. Sci., 149, 98-106. https://doi.org/10.1016/j.commatsci.2018.03.022
- Xu, X.J., Zheng, M.L. and Wang, X.C. (2017), "On vibrations of nonlocal rods: Boundary conditions, exact solutions and their asymptotics", Int. J. Eng. Sci., 119, 217-231. https://doi.org/10.1016/j.ijengsci.2017.06.025
- Yan, J.W. and Lai, S.K. (2018), "Superelasticity and wrinkles controlled by twisting circular graphene", Comput. Method. Appl. Mech. Eng., 338, 634-656. https://doi.org/10.1016/j.cma.2018.04.049
- Yang, J., Wu, H. and Kitipornchai, S. (2016), "Buckling and postbuckling of functionally graded multilayer graphene plateletreinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048
- Yang, J., Dong, J. and Kitipornchai, S. (2018a), "Unilateral and bilateral buckling of functionally graded corrugated thin plates reinforced with graphene nanoplatelets", Compos. Struct., 209, 789-801. https://doi.org/10.1016/j.compstruct.2018.11.025
- Yang, Z., Liew, K.M. and Hui, D. (2018b), "Characterizing nonlinear vibration behavior of bilayer graphene thin films", Compos. Part B Eng., 145, 197-205. https://doi.org/10.1016/j.compositesb.2018.03.004
- Yengejeh, S.I., Kazemi, S.A., Ivasenko, O. and O chsner, A. (2017), "Simulations of Graphene Sheets Based on the Finite Element Method and Density Functional Theory: Comparison of the Geometry Modeling under the Influence of Defects", J. Nano. Res-sew., 47, 128-135. https://doi.org/10.4028/www.scientific.net/JNanoR.47.128
- Zenkour, A.M. and Abouelregal, A.E. (2015), "Thermoelastic interaction in functionally graded nanobeams subjected to timedependent heat flux", Steel Compos. Struct., Int. J., 18(4), 909-924. https://doi.org/10.12989/scs.2015.18.4.909
- Zhan, H.Z., Yang, F.P. and Wang, X. (2018), "Nonlinear dynamic characteristics of bi-graphene sheets/piezoelectric laminated films considering high order van der Walls force and scale effect", Appl. Math. Model., 56, 289-303. https://doi.org/10.1016/j.apm.2017.11.038
- Zhang, J., Zhang, W., Ragab, T. and Basaran, C. (2018), "Mechanical and electronic properties of graphene nanomesh heterojunctions", Comp. Mater. Sci., 153, 64-72. https://doi.org/10.1016/j.commatsci.2018.06.026
- Zhu, X. and Li, L. (2017), "Closed form solution for a nonlocal strain gradient rod in tension", Int. J. Eng. Sci., 119, 16-28. https://doi.org/10.1016/j.ijengsci.2017.06.019
피인용 문헌
- A semi-analytical study on effects of geometric imperfection and curved fiber paths on nonlinear response of compression-loaded laminates vol.40, pp.4, 2019, https://doi.org/10.12989/scs.2021.40.4.621