Acknowledgement
Supported by : King Faisal University
References
- Abazid, M.A., Alotebi, M.S. and Sobhy, M. (2018), "A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation", Struct. Eng. Mech., Int. J., 67(3), 219-232. https://doi.org/10.12989/sem.2018.67.3.219
- Arefi, M. (2018), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., Int. J., 27(4), 479-493. https://doi.org/10.12989/scs.2018.27.4.479
- Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A. and Ahmed, M.S. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B: Eng., 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
- Bhimaraddi, A. (1991), "Free vibration analysis of doubly curved shallow shells on rectangular planform using three-dimensional elasticity theory", Int. J. Solids Struct., 27, 897-913. https://doi.org/10.1016/0020-7683(91)90023-9
- Bich, D.H., Duc, N.D. and Quan, T.Q. (2014), "Nonlinear vibration of imperfect eccentrically stiffened functionally graded double curved shallow shells resting on elastic foundation using the first order shear deformation theory", Int. J. Mech. Sci., 80, 16-28. https://doi.org/10.1016/j.ijmecsci.2013.12.009
- Bourada, M., Tounsi, A., Houari, M.S.A. and Bedia, E.A.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386
- Chandrashekhara, K. (1989), "Free vibrations of anisotropic laminated doubly curved shells", Comput. Struct., 33(2), 435-440. https://doi.org/10.1016/0045-7949(89)90015-1
- Chorfi, S.M. and Houmat, A. (2010), "Nonlinear free vibration of a functionally graded doubly curved shallow shell of elliptical plan-form", Compos. Struct., 92, 2573-2581. https://doi.org/10.1016/j.compstruct.2010.02.001
- De Villoria, R.G. and Miravete, A. (2007), "Mechanical model to evaluate the effect of the dispersion in nanocomposites", Acta Mater, 55(9), 3025-3031. https://doi.org/10.1016/j.actamat.2007.01.007
- Duc, N.D. (2013), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", Compos. Struct., 99, 88-96. https://doi.org/10.1016/j.compstruct.2012.11.017
- Duc, N.D., Seung-Eock, K., Cong, P.H., Anh, N.T. and Khoa, N.D. (2017), "Dynamic response and vibration of composite double curved shallow shells with negative Poisson's ratio in auxetic honeycombs core layer on elastic foundations subjected to blast and damping loads", Int. J. Mech. Sci., 133, 504-512. https://doi.org/10.1016/j.ijmecsci.2017.09.009
- Fadaee, M., Ilkhani, M.R. and Hosseini-Hashemi, S. (2016), "A new generic exact solution for free vibration of functionally graded moderately thick doubly curved shallow shell panel", J. Vib. Control, 22(15), 3355-3367. https://doi.org/10.1177/1077546314551778
- Fang, M., Wang, K., Lu, H., Yang, Y. and Nutt, S. (2009), "Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites", J. Mater. Chem., 19(38), 7098-7105. https://doi.org/10.1039/B908220D
- Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052
- Ghavanloo, E. and Fazelzadeh, S.A. (2013), "Free vibration analysis of orthotropic doubly-curved shallow shells based on the gradient elasticity", Compos. Part B, 45, 1448-1457. https://doi.org/10.1016/j.compositesb.2012.09.054
- Halpin, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: a review", Polymer Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512
- Hause, T. and Librescu, L. (2007), "Doubly curved anisotropic sandwich panels: Modeling and free vibration", J. Aircr., 44(4), 1327-1336. https://doi.org/10.2514/1.26990
- Hosseini, S.M. and Zhang, C. (2018), "Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel Compos. Struct., Int. J., 27(3), 255-271. https://doi.org/10.2514/1.26990
- Jiang, S., Yang, T., Li, W.L. and Du, J. (2013), "Vibration analysis of doubly curved shallow shells with elastic edge restraints", J. Vib. Acoust., 135(3), 034502. https://doi.org/10.1115/1.4023146
- Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018a), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099
- Karami, B., Shahsavari, D. and Janghorban, M. (2018b), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82, 499-512. https://doi.org/10.1016/j.ast.2018.10.001
- Karami, B., Shahsavari, D. and Janghorban, M. (2018c), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25(12), 1047-1057. https://doi.org/10.1080/15376494.2017.1323143
- Karami, B., Shahsavari, D., Janghorban, M., Dimitri, R. and Tornabene, F. (2019), "Wave propagation of porous nanoshells", Nanomaterials, 9(1), 22. https://doi.org/10.3390/nano9010022
- Kiani, Y., Akbarzadeh, A.H., Chen, Z.T. and Eslami, M.R. (2012), "Static and dynamic analysis of an FGM doubly curved panel resting on the Pasternak-type elastic foundation", Compos. Struct., 94(8), 2474-2484. https://doi.org/10.1016/j.compstruct.2012.02.028
- Li, L., Li, H., Pang, F., Wang, X., Du, Y. and Li, S. (2017), "The modified Fourier-Ritz approach for the free vibration of functionally graded cylindrical, conical, spherical panels and shells of revolution with general boundary condition", Math. Probl. Eng. https://doi.org/10.1155/2017/9183924.
- Liew, K.M. and Lim, C.W. (1996), "Vibration of doubly-curved shallow shells", Acta. Mech., 114(1), 95-119. https://doi.org/10.1007/BF01170398
- Liew, K.M. and Lim, C.W. (1997), "Vibration of thick doublycurved stress free shallow shells of curvilinear planform", J. Eng. Mech. ASCE, 123, 413-421. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:5(413)
- Mahdavi, M.H., Jiang, L. and Sun, X. (2012), "Nonlinear free vibration analysis of an embedded double layer graphene sheet in polymer medium", Int. J. Appl. Mech., 4(4), 1250039. https://doi.org/10.1142/S1758825112500391
- Matsunaga, H. (2008), "Free vibration and stability of functionally graded shallow shells according to a 2-D higher-order deformation theory", Compos. Struct., 84, 132-146. https://doi.org/10.1016/j.compstruct.2007.07.006
- Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
- Mochida, Y., Ilanko, S., Duke, M. and Narita, Y. (2012), "Free vibration analysis of doubly curved shallow shells using the superposition-Galerkin method", J. Sound Vib., 331(6), 1413-1425. https://doi.org/10.1016/j.jsv.2011.10.031
- Monterrubio, L.E. (2009), "Free vibration of shallow shells using the Rayleigh-Ritz method and penalty parameters", Arch. Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci., 223(10), 2263-2272. https://doi.org/10.1243/09544062JMES1442
- Najafi, F., Shojaeefard, M.H. and Googarchin, H.S. (2017), "Lowvelocity impact response of functionally graded doubly curved panels with Winkler-Pasternak elastic foundation: An analytical approach", Compos. Struct., 162, 351-364. https://doi.org/10.1016/j.compstruct.2016.11.094
- Nasihatgozar, M., Khalili, S.M.R. and Fard, K.M. (2017), "General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core using higher order shear deformation theory", Steel Compos. Struct., Int. J., 24(2), 151-176. https://doi.org/10.12989/scs.2017.24.2.151
- Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K. and Chen, Y. (2010), "Anisotropic mechanical properties of graphene sheets from molecular dynamics", Physica B, 405(5), 1301-1306. https://doi.org/10.1016/j.physb.2009.11.071
- Qatu, M.S. and Asadi, E. (2012), "Vibration of doubly curved shallow shells with arbitrary boundaries", Appl. Acoust., 73, 21-27. https://doi.org/10.1016/j.apacoust.2011.06.013
- Qatu, M.S. and Leissa, A.W. (1991), "Natural frequencies for cantilevered doubly-curved laminated composite shallow shells", Compos. Struct., 17, 227-255. https://doi.org/10.1016/0263-8223(91)90053-2
- Pasternak, P.L. (1954), "On a new method of analysis of an elastic foundation by means of two foundation constants", Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow, 1-56. [In Russian]
- Pathak, A.K., Borah, M., Gupta, A., Yokozeki, T. and Dhakate, S.R. (2016), "Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites", Compos. Sci. Technol., 135, 28-38. https://doi.org/10.1016/j.compscitech.2016.09.007
- Pouresmaeeli, S. and Fazelzadeh, S.A. (2016), "Frequency analysis of doubly curved functionally graded carbon nanotubereinforced composite panels", Acta Mech., 227, 2765-2794. https://doi.org/10.1007/s00707-016-1647-9
- Pradyumna, S. and Bandyopadhyay, J.N. (2008), "Free vibration analysis of functionally graded curved panels using a higherorder finite element formulation", J. Sound Vib., 318(1-2), 176-192. https://doi.org/10.1016/j.jsv.2008.03.056
- Rafiee, M.A., Rafiee, J., Yu, Z.Z. and Koratkar, N. (2009), "Buckling resistant graphene nanocomposites", Appl. Phys. Lett., 95, 223103. https://doi.org/10.1063/1.3269637
- Reddy, J.N. and Liu, C.F. (1976), "A higher-order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23(3), 319-330. https://doi.org/10.1016/0020-7225(85)90051-5
- Rezaiee, P.M., Masoodi, A. and Arabi, E. (2018), "Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element", Steel Compos. Struct., Int. J., 28(3), 389-401. https://doi.org/10.12989/scs.2018.28.3.389
- Sahmani, S. and Aghdam, M.M. (2017), "Nonlinear instability of axially loaded functionally graded multilayer graphene plateletreinforced nanoshells based on nonlocal strain gradient elasticity theory", Int. J. Mech. Sci., 131, 95-106. https://doi.org/10.1016/j.ijmecsci.2017.06.052
- Shahsavari, D., Karami, B., Fahham, H.R. and Li, L. (2018a), "On the shear buckling of porous nanoplates using a new sizedependent quasi-3D shear deformation theory", Acta Mechanica, 229(11), 4549-4573. https://doi.org/10.1007/s00707-018-2247-7
- Shahsavari, D., Karami, B. and Li, L. (2018b), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., Int. J., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053
- Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018c), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004
- Shen, H.S., Xiang, Y., Lin, F. and Hui, D. (2017), "Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments", Compos. Part B, 119, 67-78. https://doi.org/10.1016/j.compositesb.2017.03.020
- Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA J., 40, 137-146. https://doi.org/10.2514/2.1622
- Singh, A.V. (1999), "Free vibration analysis of deep doubly curved sandwich panels", Comput. Struct., 73(1-5), 385-394. https://doi.org/10.1016/S0045-7949(98)00267-3
- Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018
- Sobhy, M. (2014a), "Generalized two-variable plate theory for multi-layered graphene sheets with arbitrary boundary conditions", Acta Mech., 225, 2521-2538. https://doi.org/10.1007/s00707-014-1093-5
- Sobhy, M. (2014b), "Natural frequency and buckling of orthotropic nanoplates resting on two-parameter elastic foundations with various boundary conditions", J. Mech., 30, 443-453. https://doi.org/10.1017/jmech.2014.46
- Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", Int. J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003
- Sobhy, M. (2018), "Magneto-electro-thermal bending of FGgraphene reinforced polymer doubly-curved shallow shells with piezoelectromagnetic faces", Compos. Struct., 203, 844-860. https://doi.org/10.1016/j.compstruct.2018.07.056
- Sobhy, M. (2019), "Levy solution for bending response of FG carbon nanotube reinforced plates under uniform, linear, sinusoidal and exponential distributed loadings", Eng. Struct., 182, 198-212. https://doi.org/10.1016/j.engstruct.2018.12.071
- Sobhy, M. and Abazid, M.A. (2019), "Dynamic and instability analyses of FG graphene-reinforced sandwich deep curved nanobeams with viscoelastic core under magnetic field effect", Compos. Part B: Eng., 174, 106966. https://doi.org/10.1016/j.compositesb.2019.106966
- Sobhy, M. and Zenkour, A.M. (2018), "Thermal buckling of double-layered graphene system in humid environment", Mater. Res. Express, 5(1), 015028. https://doi.org/10.1088/2053-1591/aaa2ba
- Sobhy, M. and Zenkour, A.M. (2019a), "A comprehensive study on the size-dependent hygrothermal analysis of exponentially graded microplates on elastic foundations", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2018.1499986
- Sobhy, M. and Zenkour, A.M. (2019b), "Wave propagation in magneto-porosity FG bi-layer nanoplates based on a novel quasi-3D refined plate theory", Waves Random Complex Media, 1-21. http://doi.org/10.1080/17455030.2019.1634853.
- Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070
- Tan, D.Y. (1998), "Free vibration analysis of shells of revolution", J. Sound Vib., 213(1), 15-33. https://doi.org/10.1006/jsvi.1997.1406
- Thai, H.T. and Vo, T.P. (2013), "A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates", Appl. Math. Model., 37(5), 3269-3281. https://doi.org/10.1016/j.apm.2012.08.008
- Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech-A/Solids, 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008
- Tornabene, F. (2011a), "2-D GDQ solution for free vibrations of anisotropic doubly-curved shells and panels of revolution", Compos. Struct., 93(7), 1854-1876. https://doi.org/10.1016/j.compstruct.2011.02.006
- Tornabene, F. (2011b), "Free vibrations of anisotropic doublycurved shells and panels of revolution with a free-form meridian resting on Winkler-Pasternak elastic foundations", Compos. Struct., 94, 186-206. https://doi.org/10.1016/j.compstruct.2011.07.002
- Tornabene, F., Fantuzzi, N., Viola, E. and Ferreira, A.J.M. (2013), "Radial basis function method applied to doubly-curved laminated composite shells and panels with a general higherorder equivalent single layer formulation", Compos. Part B, 55(1), 642-659. https://doi.org/10.1016/j.compositesb.2013.07.026
- Vlasov, V.Z. and Leontev, N.N. (1966), "Beams, plates and shells on elastic foundations", Israel Program for Scientific Translation, Jeruselam. [Translated from Russian]
- Voloshina, E.N. and Dedkov, Y.S. (2014), "General approach to understanding the electronic structure of graphene on metals", Mater. Res. Express, 1(3), 035603. https://doi.org/10.1088/2053-1591/1/3/035603
- Wu, H., Kitipornchai, S. and Yang, J. (2017a), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater. Des., 132, 430-441. https://doi.org/10.1016/j.matdes.2017.07.025
- Wu, H., Yang, J. and Kitipornchai, S. (2017b), "Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment", Compos. Struct., 162, 244-254. https://doi.org/10.1016/j.compstruct.2016.12.001
- Yang, J., Wu, H. and Kitipornchai, S. (2017a), "Buckling and postbuckling of functionally graded multilayer graphene plateletreinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048
- Yang, B., Kitipornchai, S., Yang, Y.F. and Yang, J. (2017b), "3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates", Appl. Math. Model., 49, 69-86. https://doi.org/10.1016/j.apm.2017.04.044
- Yavari, F., Rafiee, M., Rafiee, J., Yu, Z.-Z. and Koratkar, N. (2010), "Dramatic increase in fatigue life in hierarchical graphene composites", ACS Appl. Mater Interfaces, 2(10), 2738-2743. https://doi.org/10.1021/am100728r
- Zenkour, A.M. and Sobhy, M. (2018), "Nonlocal piezohygrothermal analysis for vibration characteristics of a piezoelectric Kelvin-Voigt viscoelastic nanoplate embedded in a viscoelastic medium", Acta Mech., 229(1), 3-19. https://doi.org/10.1007/s00707-017-1920-6
- Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2010a), "Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak's elastic foundations", Acta Mech., 212(3-4), 233-252. https://doi.org/10.1007/s00707-009-0252-6
- Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2010b), "Effect of transverse normal and shear deformation on a fiber-reinforced viscoelastic beam resting on two-parameter elastic foundations", Int. J. Appl. Mech., 2(1), 87-115. https://doi.org/10.1142/S1758825110000482
- Zhao, X., Zhang, Q., Chen, D. and Lu, P. (2010), "Enhanced mechanical properties of graphenebased poly(vinyl alcohol) composites", Macromolecules, 43(5), 2357-2363. https://doi.org/10.1021/ma902862u
Cited by
- The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells vol.38, pp.1, 2021, https://doi.org/10.12989/scs.2021.38.1.047
- Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system vol.157, 2019, https://doi.org/10.1016/j.ymssp.2021.107723
- Bending analysis of the multi-phase nanocomposite reinforced circular plate via 3D-elasticity theory vol.40, pp.4, 2021, https://doi.org/10.12989/scs.2021.40.4.601
- Parametric study on nonlinear dynamic characteristics of functionally graded graphene nanoplatelets reinforced composite plates vol.35, pp.12, 2019, https://doi.org/10.1007/s12206-021-1106-y