DOI QR코드

DOI QR Code

Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations

  • Sobhy, Mohammed (Department of Mathematics and Statistics, Faculty of Science, King Faisal University) ;
  • Zenkour, Ashraf M. (Department of Mathematics, Faculty of Science, King Abdulaziz University)
  • Received : 2018.11.16
  • Accepted : 2019.10.04
  • Published : 2019.10.25

Abstract

Based on a four-variable shear deformation shell theory, the free vibration analysis of functionally graded graphene platelet-reinforced composite (FGGPRC) doubly-curved shallow shells with different boundary conditions is investigated in this work. The doubly-curved shells are composed of multi nanocomposite layers that are reinforced with graphene platelets. The graphene platelets are uniformly distributed in each individual layer. While, the volume faction of the graphene is graded from layer to other in accordance with a novel distribution law. Based on the suggested distribution law, four types of FGGPRC doubly-curved shells are studied. The present shells are assumed to be rested on elastic foundations. The material properties of each layer are calculated using a micromechanical model. Four equations of motion are deduced utilizing Hamilton's principle and then converted to an eigenvalue problem employing an analytical method. The obtained results are checked by introducing some comparison examples. A detailed parametric investigation is performed to illustrate the influences of the distribution type of volume fraction, shell curvatures, elastic foundation stiffness and boundary conditions on the vibration of FGGPRC doubly-curved shells.

Keywords

Acknowledgement

Supported by : King Faisal University

References

  1. Abazid, M.A., Alotebi, M.S. and Sobhy, M. (2018), "A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation", Struct. Eng. Mech., Int. J., 67(3), 219-232. https://doi.org/10.12989/sem.2018.67.3.219
  2. Arefi, M. (2018), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., Int. J., 27(4), 479-493. https://doi.org/10.12989/scs.2018.27.4.479
  3. Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A. and Ahmed, M.S. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B: Eng., 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  4. Bhimaraddi, A. (1991), "Free vibration analysis of doubly curved shallow shells on rectangular planform using three-dimensional elasticity theory", Int. J. Solids Struct., 27, 897-913. https://doi.org/10.1016/0020-7683(91)90023-9
  5. Bich, D.H., Duc, N.D. and Quan, T.Q. (2014), "Nonlinear vibration of imperfect eccentrically stiffened functionally graded double curved shallow shells resting on elastic foundation using the first order shear deformation theory", Int. J. Mech. Sci., 80, 16-28. https://doi.org/10.1016/j.ijmecsci.2013.12.009
  6. Bourada, M., Tounsi, A., Houari, M.S.A. and Bedia, E.A.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386
  7. Chandrashekhara, K. (1989), "Free vibrations of anisotropic laminated doubly curved shells", Comput. Struct., 33(2), 435-440. https://doi.org/10.1016/0045-7949(89)90015-1
  8. Chorfi, S.M. and Houmat, A. (2010), "Nonlinear free vibration of a functionally graded doubly curved shallow shell of elliptical plan-form", Compos. Struct., 92, 2573-2581. https://doi.org/10.1016/j.compstruct.2010.02.001
  9. De Villoria, R.G. and Miravete, A. (2007), "Mechanical model to evaluate the effect of the dispersion in nanocomposites", Acta Mater, 55(9), 3025-3031. https://doi.org/10.1016/j.actamat.2007.01.007
  10. Duc, N.D. (2013), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", Compos. Struct., 99, 88-96. https://doi.org/10.1016/j.compstruct.2012.11.017
  11. Duc, N.D., Seung-Eock, K., Cong, P.H., Anh, N.T. and Khoa, N.D. (2017), "Dynamic response and vibration of composite double curved shallow shells with negative Poisson's ratio in auxetic honeycombs core layer on elastic foundations subjected to blast and damping loads", Int. J. Mech. Sci., 133, 504-512. https://doi.org/10.1016/j.ijmecsci.2017.09.009
  12. Fadaee, M., Ilkhani, M.R. and Hosseini-Hashemi, S. (2016), "A new generic exact solution for free vibration of functionally graded moderately thick doubly curved shallow shell panel", J. Vib. Control, 22(15), 3355-3367. https://doi.org/10.1177/1077546314551778
  13. Fang, M., Wang, K., Lu, H., Yang, Y. and Nutt, S. (2009), "Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites", J. Mater. Chem., 19(38), 7098-7105. https://doi.org/10.1039/B908220D
  14. Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052
  15. Ghavanloo, E. and Fazelzadeh, S.A. (2013), "Free vibration analysis of orthotropic doubly-curved shallow shells based on the gradient elasticity", Compos. Part B, 45, 1448-1457. https://doi.org/10.1016/j.compositesb.2012.09.054
  16. Halpin, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: a review", Polymer Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512
  17. Hause, T. and Librescu, L. (2007), "Doubly curved anisotropic sandwich panels: Modeling and free vibration", J. Aircr., 44(4), 1327-1336. https://doi.org/10.2514/1.26990
  18. Hosseini, S.M. and Zhang, C. (2018), "Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel Compos. Struct., Int. J., 27(3), 255-271. https://doi.org/10.2514/1.26990
  19. Jiang, S., Yang, T., Li, W.L. and Du, J. (2013), "Vibration analysis of doubly curved shallow shells with elastic edge restraints", J. Vib. Acoust., 135(3), 034502. https://doi.org/10.1115/1.4023146
  20. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018a), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099
  21. Karami, B., Shahsavari, D. and Janghorban, M. (2018b), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82, 499-512. https://doi.org/10.1016/j.ast.2018.10.001
  22. Karami, B., Shahsavari, D. and Janghorban, M. (2018c), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25(12), 1047-1057. https://doi.org/10.1080/15376494.2017.1323143
  23. Karami, B., Shahsavari, D., Janghorban, M., Dimitri, R. and Tornabene, F. (2019), "Wave propagation of porous nanoshells", Nanomaterials, 9(1), 22. https://doi.org/10.3390/nano9010022
  24. Kiani, Y., Akbarzadeh, A.H., Chen, Z.T. and Eslami, M.R. (2012), "Static and dynamic analysis of an FGM doubly curved panel resting on the Pasternak-type elastic foundation", Compos. Struct., 94(8), 2474-2484. https://doi.org/10.1016/j.compstruct.2012.02.028
  25. Li, L., Li, H., Pang, F., Wang, X., Du, Y. and Li, S. (2017), "The modified Fourier-Ritz approach for the free vibration of functionally graded cylindrical, conical, spherical panels and shells of revolution with general boundary condition", Math. Probl. Eng. https://doi.org/10.1155/2017/9183924.
  26. Liew, K.M. and Lim, C.W. (1996), "Vibration of doubly-curved shallow shells", Acta. Mech., 114(1), 95-119. https://doi.org/10.1007/BF01170398
  27. Liew, K.M. and Lim, C.W. (1997), "Vibration of thick doublycurved stress free shallow shells of curvilinear planform", J. Eng. Mech. ASCE, 123, 413-421. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:5(413)
  28. Mahdavi, M.H., Jiang, L. and Sun, X. (2012), "Nonlinear free vibration analysis of an embedded double layer graphene sheet in polymer medium", Int. J. Appl. Mech., 4(4), 1250039. https://doi.org/10.1142/S1758825112500391
  29. Matsunaga, H. (2008), "Free vibration and stability of functionally graded shallow shells according to a 2-D higher-order deformation theory", Compos. Struct., 84, 132-146. https://doi.org/10.1016/j.compstruct.2007.07.006
  30. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  31. Mochida, Y., Ilanko, S., Duke, M. and Narita, Y. (2012), "Free vibration analysis of doubly curved shallow shells using the superposition-Galerkin method", J. Sound Vib., 331(6), 1413-1425. https://doi.org/10.1016/j.jsv.2011.10.031
  32. Monterrubio, L.E. (2009), "Free vibration of shallow shells using the Rayleigh-Ritz method and penalty parameters", Arch. Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci., 223(10), 2263-2272. https://doi.org/10.1243/09544062JMES1442
  33. Najafi, F., Shojaeefard, M.H. and Googarchin, H.S. (2017), "Lowvelocity impact response of functionally graded doubly curved panels with Winkler-Pasternak elastic foundation: An analytical approach", Compos. Struct., 162, 351-364. https://doi.org/10.1016/j.compstruct.2016.11.094
  34. Nasihatgozar, M., Khalili, S.M.R. and Fard, K.M. (2017), "General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core using higher order shear deformation theory", Steel Compos. Struct., Int. J., 24(2), 151-176. https://doi.org/10.12989/scs.2017.24.2.151
  35. Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K. and Chen, Y. (2010), "Anisotropic mechanical properties of graphene sheets from molecular dynamics", Physica B, 405(5), 1301-1306. https://doi.org/10.1016/j.physb.2009.11.071
  36. Qatu, M.S. and Asadi, E. (2012), "Vibration of doubly curved shallow shells with arbitrary boundaries", Appl. Acoust., 73, 21-27. https://doi.org/10.1016/j.apacoust.2011.06.013
  37. Qatu, M.S. and Leissa, A.W. (1991), "Natural frequencies for cantilevered doubly-curved laminated composite shallow shells", Compos. Struct., 17, 227-255. https://doi.org/10.1016/0263-8223(91)90053-2
  38. Pasternak, P.L. (1954), "On a new method of analysis of an elastic foundation by means of two foundation constants", Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow, 1-56. [In Russian]
  39. Pathak, A.K., Borah, M., Gupta, A., Yokozeki, T. and Dhakate, S.R. (2016), "Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites", Compos. Sci. Technol., 135, 28-38. https://doi.org/10.1016/j.compscitech.2016.09.007
  40. Pouresmaeeli, S. and Fazelzadeh, S.A. (2016), "Frequency analysis of doubly curved functionally graded carbon nanotubereinforced composite panels", Acta Mech., 227, 2765-2794. https://doi.org/10.1007/s00707-016-1647-9
  41. Pradyumna, S. and Bandyopadhyay, J.N. (2008), "Free vibration analysis of functionally graded curved panels using a higherorder finite element formulation", J. Sound Vib., 318(1-2), 176-192. https://doi.org/10.1016/j.jsv.2008.03.056
  42. Rafiee, M.A., Rafiee, J., Yu, Z.Z. and Koratkar, N. (2009), "Buckling resistant graphene nanocomposites", Appl. Phys. Lett., 95, 223103. https://doi.org/10.1063/1.3269637
  43. Reddy, J.N. and Liu, C.F. (1976), "A higher-order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23(3), 319-330. https://doi.org/10.1016/0020-7225(85)90051-5
  44. Rezaiee, P.M., Masoodi, A. and Arabi, E. (2018), "Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element", Steel Compos. Struct., Int. J., 28(3), 389-401. https://doi.org/10.12989/scs.2018.28.3.389
  45. Sahmani, S. and Aghdam, M.M. (2017), "Nonlinear instability of axially loaded functionally graded multilayer graphene plateletreinforced nanoshells based on nonlocal strain gradient elasticity theory", Int. J. Mech. Sci., 131, 95-106. https://doi.org/10.1016/j.ijmecsci.2017.06.052
  46. Shahsavari, D., Karami, B., Fahham, H.R. and Li, L. (2018a), "On the shear buckling of porous nanoplates using a new sizedependent quasi-3D shear deformation theory", Acta Mechanica, 229(11), 4549-4573. https://doi.org/10.1007/s00707-018-2247-7
  47. Shahsavari, D., Karami, B. and Li, L. (2018b), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., Int. J., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053
  48. Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018c), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004
  49. Shen, H.S., Xiang, Y., Lin, F. and Hui, D. (2017), "Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments", Compos. Part B, 119, 67-78. https://doi.org/10.1016/j.compositesb.2017.03.020
  50. Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA J., 40, 137-146. https://doi.org/10.2514/2.1622
  51. Singh, A.V. (1999), "Free vibration analysis of deep doubly curved sandwich panels", Comput. Struct., 73(1-5), 385-394. https://doi.org/10.1016/S0045-7949(98)00267-3
  52. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018
  53. Sobhy, M. (2014a), "Generalized two-variable plate theory for multi-layered graphene sheets with arbitrary boundary conditions", Acta Mech., 225, 2521-2538. https://doi.org/10.1007/s00707-014-1093-5
  54. Sobhy, M. (2014b), "Natural frequency and buckling of orthotropic nanoplates resting on two-parameter elastic foundations with various boundary conditions", J. Mech., 30, 443-453. https://doi.org/10.1017/jmech.2014.46
  55. Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", Int. J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003
  56. Sobhy, M. (2018), "Magneto-electro-thermal bending of FGgraphene reinforced polymer doubly-curved shallow shells with piezoelectromagnetic faces", Compos. Struct., 203, 844-860. https://doi.org/10.1016/j.compstruct.2018.07.056
  57. Sobhy, M. (2019), "Levy solution for bending response of FG carbon nanotube reinforced plates under uniform, linear, sinusoidal and exponential distributed loadings", Eng. Struct., 182, 198-212. https://doi.org/10.1016/j.engstruct.2018.12.071
  58. Sobhy, M. and Abazid, M.A. (2019), "Dynamic and instability analyses of FG graphene-reinforced sandwich deep curved nanobeams with viscoelastic core under magnetic field effect", Compos. Part B: Eng., 174, 106966. https://doi.org/10.1016/j.compositesb.2019.106966
  59. Sobhy, M. and Zenkour, A.M. (2018), "Thermal buckling of double-layered graphene system in humid environment", Mater. Res. Express, 5(1), 015028. https://doi.org/10.1088/2053-1591/aaa2ba
  60. Sobhy, M. and Zenkour, A.M. (2019a), "A comprehensive study on the size-dependent hygrothermal analysis of exponentially graded microplates on elastic foundations", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2018.1499986
  61. Sobhy, M. and Zenkour, A.M. (2019b), "Wave propagation in magneto-porosity FG bi-layer nanoplates based on a novel quasi-3D refined plate theory", Waves Random Complex Media, 1-21. http://doi.org/10.1080/17455030.2019.1634853.
  62. Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070
  63. Tan, D.Y. (1998), "Free vibration analysis of shells of revolution", J. Sound Vib., 213(1), 15-33. https://doi.org/10.1006/jsvi.1997.1406
  64. Thai, H.T. and Vo, T.P. (2013), "A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates", Appl. Math. Model., 37(5), 3269-3281. https://doi.org/10.1016/j.apm.2012.08.008
  65. Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech-A/Solids, 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008
  66. Tornabene, F. (2011a), "2-D GDQ solution for free vibrations of anisotropic doubly-curved shells and panels of revolution", Compos. Struct., 93(7), 1854-1876. https://doi.org/10.1016/j.compstruct.2011.02.006
  67. Tornabene, F. (2011b), "Free vibrations of anisotropic doublycurved shells and panels of revolution with a free-form meridian resting on Winkler-Pasternak elastic foundations", Compos. Struct., 94, 186-206. https://doi.org/10.1016/j.compstruct.2011.07.002
  68. Tornabene, F., Fantuzzi, N., Viola, E. and Ferreira, A.J.M. (2013), "Radial basis function method applied to doubly-curved laminated composite shells and panels with a general higherorder equivalent single layer formulation", Compos. Part B, 55(1), 642-659. https://doi.org/10.1016/j.compositesb.2013.07.026
  69. Vlasov, V.Z. and Leontev, N.N. (1966), "Beams, plates and shells on elastic foundations", Israel Program for Scientific Translation, Jeruselam. [Translated from Russian]
  70. Voloshina, E.N. and Dedkov, Y.S. (2014), "General approach to understanding the electronic structure of graphene on metals", Mater. Res. Express, 1(3), 035603. https://doi.org/10.1088/2053-1591/1/3/035603
  71. Wu, H., Kitipornchai, S. and Yang, J. (2017a), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater. Des., 132, 430-441. https://doi.org/10.1016/j.matdes.2017.07.025
  72. Wu, H., Yang, J. and Kitipornchai, S. (2017b), "Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment", Compos. Struct., 162, 244-254. https://doi.org/10.1016/j.compstruct.2016.12.001
  73. Yang, J., Wu, H. and Kitipornchai, S. (2017a), "Buckling and postbuckling of functionally graded multilayer graphene plateletreinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048
  74. Yang, B., Kitipornchai, S., Yang, Y.F. and Yang, J. (2017b), "3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates", Appl. Math. Model., 49, 69-86. https://doi.org/10.1016/j.apm.2017.04.044
  75. Yavari, F., Rafiee, M., Rafiee, J., Yu, Z.-Z. and Koratkar, N. (2010), "Dramatic increase in fatigue life in hierarchical graphene composites", ACS Appl. Mater Interfaces, 2(10), 2738-2743. https://doi.org/10.1021/am100728r
  76. Zenkour, A.M. and Sobhy, M. (2018), "Nonlocal piezohygrothermal analysis for vibration characteristics of a piezoelectric Kelvin-Voigt viscoelastic nanoplate embedded in a viscoelastic medium", Acta Mech., 229(1), 3-19. https://doi.org/10.1007/s00707-017-1920-6
  77. Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2010a), "Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak's elastic foundations", Acta Mech., 212(3-4), 233-252. https://doi.org/10.1007/s00707-009-0252-6
  78. Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2010b), "Effect of transverse normal and shear deformation on a fiber-reinforced viscoelastic beam resting on two-parameter elastic foundations", Int. J. Appl. Mech., 2(1), 87-115. https://doi.org/10.1142/S1758825110000482
  79. Zhao, X., Zhang, Q., Chen, D. and Lu, P. (2010), "Enhanced mechanical properties of graphenebased poly(vinyl alcohol) composites", Macromolecules, 43(5), 2357-2363. https://doi.org/10.1021/ma902862u

Cited by

  1. The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells vol.38, pp.1, 2021, https://doi.org/10.12989/scs.2021.38.1.047
  2. Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system vol.157, 2019, https://doi.org/10.1016/j.ymssp.2021.107723
  3. Bending analysis of the multi-phase nanocomposite reinforced circular plate via 3D-elasticity theory vol.40, pp.4, 2021, https://doi.org/10.12989/scs.2021.40.4.601
  4. Parametric study on nonlinear dynamic characteristics of functionally graded graphene nanoplatelets reinforced composite plates vol.35, pp.12, 2019, https://doi.org/10.1007/s12206-021-1106-y