Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Abed, F., AlHamaydeh, M. and Abdalla, S. (2013), "Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs)", J. Constr. Steel Res., 80, 429-439. https://doi.org/10.1016/j.jcsr.2012.10.005
- ACI 318-08 (2011), Building Code Requirements for Structural Concrete and Commentary (ACI 318-08).
- Adeli, H. (2001), "Neural networks in civil engineering: 1989-2000", Comput.-Aided Civil Infra. Eng., 16(2), 126-142. https://doi.org/10.1111/0885-9507.00219
- Adeli, H. and Karim, A. (1997), "Neural network model for optimization of cold-formed steel beams", J. Struct. Eng., 123(11), 1535-1543. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:11(1535)
- AISC Committee (2010), Specification for structural steel buildings (ANSI/AISC 360-10), American Institute of Steel Construction, Chicago, IL, USA.
- AS 5100.6 (2004), Bridge design Part 6: Steel and composite construction, AS 5100.6.
- Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015), "Predicting the axial load capacity of high-strength concrete filled steel tubular columns", Steel Compos. Struct., Int. J., 19(4), 967-993. https://doi.org/10.12989/scs.2015.19.4.967
- Bashir, R. and Ashour, A. (2012), "Neural network modelling for shear strength of concrete members reinforced with FRP bars", Compos. Part B: Eng., 43(8), 3198-3207. https://doi.org/10.1016/j.compositesb.2012.04.011
-
Beale, M.H., Hagan, M.T. and Demuth, H.B. (1992), Neural Network
$Toolbox^{TM}$ User's Guide, The Mathworks Inc. - Bradford, M., Loh, H. and Uy, B. (2002), "Slenderness limits for filled circular steel tubes", J. Constr. Steel Res., 58(2), 243-252. https://doi.org/10.1016/S0143-974X(01)00043-8
- Cascardi, A., Micelli, F. and Aiello, M.A. (2017), "An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns", Eng. Struct., 140, 199-208. https://doi.org/10.1016/j.engstruct.2017.02.047
- Ekmekyapar, T. and Al-Eliwi, B.J. (2016), "Experimental behaviour of circular concrete filled steel tube columns and design specifications", Thin-Wall. Struct., 105, 220-230. https://doi.org/10.1016/j.tws.2016.04.004
- Engin, S., Ozturk, O. and Okay, F. (2015), "Estimation of ultimate torque capacity of the SFRC Beams Using ANN", Struct. Eng. Mech., Int. J., 53(5), 939-956. https://doi.org/10.12989/sem.2015.53.5.939
- Gardner, N.J. and Jacobson, E.R. (1967), "Structural behavior of concrete filled steel tubes", J. Proceedings, 64(7), 404-413.
- Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001
- Goode, C. and Narayanan, R. (1997), "Design of concrete filled steel tubes to EC4", ASCCS Seminar on Concrete Filled Steel Tubes-A Comparison of International Codes and Practice.
- Gu, W., Guan, C., Zhao, Y. and Cao, H. (2004), "Experimental study on concentrically-compressed circular concrete filled CFRP-steel composite tubular short columns", J. Shenyang Architect. Civil Eng. Univ. (Natural Science), 20(2), 118-120. https://doi.org/10.3321/j.issn:1671-2021.2004.02.010
- Han, L.-H. and Yao, G.-H. (2003), "Behaviour of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes", J. Constr. Steel Res., 59(12), 1455-1475. https://doi.org/10.1016/S0143-974X(03)00102-0
- Han, L.-H. and Yao, G.-H. (2004), "Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC)", Thin-Wall. Struct., 42(9), 1357-1377. https://doi.org/10.1016/j.tws.2004.03.016
- Han, L.-H., Yao, G.-H. and Zhao, X.-L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Constr. Steel Res., 61(9), 1241-1269. https://doi.org/10.1016/j.jcsr.2005.01.004
- Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
- Hu, Y., Yu, T. and Teng, J. (2011), "FRP-confined circular concrete-filled thin steel tubes under axial compression", J.of Compos. Constr., 15(5), 850-860. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000217
- Huang, C., Yeh, Y.-K., Liu, G.-Y., Hu, H.-T., Tsai, K., Weng, Y., Wang, S. and Wu, M.-H. (2002), "Axial load behavior of stiffened concrete-filled steel columns", J. Struct. Eng., 128(9), 1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222)
- Janss, J. (1974), Charges ultimes des profils creux remplis de beton charges axialement, Centre de Recherches Scientifiques et Techniques de l'Industrie des Fabrications Metalliques
- Jazayeri, K., Jazayeri, M. and Uysal, S. (2016), "Comparative analysis of Levenberg-Marquardt and Bayesian regularization backpropagation algorithms in photovoltaic power estimation using artificial neural network", Industrial Conference on Data Mining. https://doi.org/10.1007/978-3-319-41561-1_7
- Johansson, M. (2002), "The efficiency of passive confinement in CFT columns", Steel Compos. Struct., Int. J., 2(5), 379-396. https://doi.org/10.12989/scs.2002.2.5.379
- Johnson, R.P. and Anderson, D. (2004), Designers' Guide to EN 1994-1-1: Eurocode 4: Design of Composite Steel and Concrete Structures. General Rules and Rules for Buildings, Thomas Telford.
- Kang, H., Lim, S. and Moon, T. (2002), "Behavior of CFT stub columns filled with PCC on concentrically compressive load", J. Architect. Inst. Korea, 18(9), 21-28.
- Kao, C.-S. and Yeh, I. (2014), "Optimal design of plane frame structures using artificial neural networks and ratio variables", Struct. Eng. Mech., Int. J., 52(4), 739-753. https://doi.org/10.12989/sem.2014.52.4.739
- Karina, C.N., Chun, P.-j. and Okubo, K. (2017), "Tensile strength prediction of corroded steel plates by using machine learning approach", Steel Compos. Struct., Int. J., 24(5), 635-641. https://doi.org/10.12989/scs.2017.24.5.635
- Kato, B. (1995), "Strength and Rotation Capacity of Concrete-Filled Tubular Columns, Part 1", J. Struct. Constr. Eng. (Transactions of AIJ), AJI, 468, 183-191. https://doi.org/10.3130/aijs.60.183
- Kato, B. (1996), "Column curves of steel-concrete composite members", J. Constr. Steel Res., 39(2), 121-135. https://doi.org/10.1016/S0143-974X(96)00030-2
- Khan, Q., Sheikh, M.N. and Hadi, M.N. (2016), "Axial compressive behaviour of circular CFFT: Experimental database and design-oriented model". https://doi.org/10.12989/scs.2016.21.4.921
- Leung, C.K., Ng, M.Y. and Luk, H.C. (2006), "Empirical approach for determining ultimate FRP strain in FRP-strengthened concrete beams", J. Compos. Constr., 10(2), 125-138. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:2(125)
- Liao, F.-Y., Han, L.-H. and He, S.-H. (2011), "Behavior of CFST short column and beam with initial concrete imperfection: Experiments", J. Constr. Steel Res., 67(12), 1922-1935. https://doi.org/10.1016/j.jcsr.2011.06.009
- Lin, C. (1988), "Axial capacity of concrete infilled cold-formed steel columns".
- Lin, S., Zhao, Y.-G. and He, L. (2018), "Stress paths of confined concrete in axially loaded circular concrete-filled steel tube stub columns", Eng. Struct., 173, 1019-1028. https://doi.org/10.1016/j.engstruct.2018.06.112
- Luksha, L. and Nesterovich, A. (1991), "Strength testing of largediameter concrete filled steel tubular members", Proceedings of the Third International Conference on Steel-Concrete Composite Structures, Wakabayashi, M.(ed.), Fukuoka, Japan, Association for International Cooperation and Research in Steel-Concrete Composite Structures.
- MacKay, D.J. (1992), "Bayesian interpolation", Neural Computat., 4(3), 415-447. https://doi.org/10.1162/neco.1992.4.3.415
- Mandal, P. (2017), "Artificial neural network prediction of buckling load of thin cylindrical shells under axial compression", Eng. Struct., 152, 843-855. https://doi.org/10.1016/j.engstruct.2017.09.016
- Mikami, I., Tanaka, S. and Hiwatashi, T. (1998), "Neural Network System for Reasoning Residual Axial Forces of High-Strength Bolts in Steel Bridges", Comput.-Aided Civil Infra. Eng., 13(4), 237-246. https://doi.org/10.1111/0885-9507.00102
- Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2013), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech., Int. J., 46(6), 853-868. https://doi.org/10.12989/sem.2013.46.6.853
- Mukherjee, A., Deshpande, J. and Anmala, J. (1996), "Prediction of buckling load of columns using artificial neural networks", J. Struct. Eng., 122(11), 1385-1387. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1385)
- Naderpour, H., Kheyroddin, A. and Amiri, G.G. (2010), "Prediction of FRP-confined compressive strength of concrete using artificial neural networks", Compos. Struct., 92(12), 2817-2829. https://doi.org/10.1016/j.compstruct.2010.04.008
- Nematzadeh, M., Hajirasouliha, I., Haghinejad, A. and Naghipour, M. (2017), "Compressive behaviour of circular steel tubeconfined concrete stub columns with active and passive confinement", Steel Compos. Struct., Int. J., 24(3), 323-337. https://doi.org/10.12989/scs.2017.24.3.323
- Nikbin, I.M., Rahimi, S. and Allahyari, H. (2017), "A new empirical formula for prediction of fracture energy of concrete based on the artificial neural network", Eng. Fract. Mech., 186, 466-482. https://doi.org/10.1016/j.engfracmech.2017.11.010
- O'Shea, M.D. and Bridge, R.Q. (1994), "Tests of thin-walled concrete-filled steel tubes".
- O'Shea, M.D. and Bridge, R.Q. (1996), "Circular thin-walled tubes with high strength concrete infill", Composite construction in steel and concrete III, pp. 780-793.
- O'Shea, M.D. and Bridge, R.Q. (2000), "Design of circular thinwalled concrete filled steel tubes", J. Struct. Eng., 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295)
- Pendharkar, U., Chaudhary, S. and Nagpal, A. (2011), "Prediction of moments in composite frames considering cracking and time effects using neural network models", Struct. Eng. Mech., Int. J., 39(2), 267-285. https://doi.org/10.12989/sem.2011.39.2.267
- Roeder, C.W., Lehman, D.E. and Bishop, E. (2010), "Strength and stiffness of circular concrete-filled tubes", J. Struct. Eng., 136(12), 1545-1553. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000263
- Saisho, M., Abe, T. and Nakaya, K. (1999), "Ultimate bending strength of high-strength concrete filled steel tube column", J. Struct. Constr. Eng., AIJ, 523(1), 133-140.
- Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
- Tan, K. (2006), "Analysis of formulae for calculating loading bearing capacity of steel tubular high strength concrete", J. Southwest Univ. Sci. Technol., 21(2), 7-10. https://doi.org/10.3969/j.issn.1671-8755.2006.02.002
- Tashakori, A. and Adeli, H. (2002), "Optimum design of coldformed steel space structures using neural dynamics model", J. Constr. Steel Res., 58(12), 1545-1566. https://doi.org/10.1016/S0143-974X(01)00105-5
- Tran, V.-L., Thai, D.-K. and Kim, S.-E. (2019), "Application of ANN in predicting ACC of SCFST column", Compos. Struct., 111332. https://doi.org/10.1016/j.compstruct.2019.111332
- Wang, Z.-B., Tao, Z., Han, L.-H., Uy, B., Lam, D. and Kang, W.-H. (2017), "Strength, stiffness and ductility of concrete-filled steel columns under axial compression", Eng. Struct., 135, 209-221. https://doi.org/10.1016/j.engstruct.2016.12.049
- Wu, X., Ghaboussi, J. and Garrett Jr, J. (1992), "Use of neural networks in detection of structural damage", Comput. Struct., 42(4), 649-659. https://doi.org/10.1016/0045-7949(92)90132-J
- Xue, J.-Q., Briseghella, B. and Chen, B.-C. (2012), "Effects of debonding on circular CFST stub columns", J. Constr. Steel Res., 69(1), 64-76. https://doi.org/10.1016/j.jcsr.2011.08.002
- Yamamoto, T., Kawaguchi, J. and Morino, S. (2002), "Experimental study of the size effect on the behavior of concrete filled circular steel tube columns under axial compression", J. Struct. Constr. Eng., 561, 237-244. https://doi.org/10.3130/aijs.67.237_2
- Yu, Z.-w., Ding, F.-x. and Cai, C. (2007), "Experimental behavior of circular concrete-filled steel tube stub columns", J. Constr. Steel Res., 63(2), 165-174. https://doi.org/10.1016/j.jcsr.2006.03.009
- Yu, Z., Ding, F. and Lin, S. (2002), "Researches on Behavior of High-performance Concrete Filied Tubular Steel Short Columns [J]", J. Build. Struct., 2.
- Zhang, S.-m. and Wang, Y.-y. (2004), "Failure modes of short columns of high-strength concrete filled steel tubes", China Civil Eng. J., 37(9), 1-10. https://doi.org/10.3321/j.issn:1000-131X.2004.09.001
- Zhang, Y., Fu, G.-Y., Yu, C.-J., Chen, B., Zhao, S.-X. and Li, S.-P. (2016), "Experimental behavior of circular flyash-concrete-filled steel tubular stub columns", Steel Compos. Struct., Int. J., 22(4), 821-835. https://doi.org/10.12989/scs.2016.22.4.821
Cited by
- Prediction of Ultimate Load of Rectangular CFST Columns Using Interpretable Machine Learning Method vol.2020, 2019, https://doi.org/10.1155/2020/8855069
- A Machine Learning-Based Model for Predicting Atmospheric Corrosion Rate of Carbon Steel vol.2021, 2019, https://doi.org/10.1155/2021/6967550