Acknowledgement
Supported by : National Natural Science Foundation of China, Central University, China Postdoctoral Science Foundation
References
- Bambill, D.V., Rossit, C.A. and Felix, D.H. (2015), "Free vibrations of stepped axially functionally graded Timoshenko beams", Meccanica, 50(4), 1073-1087. https://doi.org/10.1007/s11012-014-0053-4
- Beni, Y.T., Mehralian, F. and Razavi, H. (2015), "Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory", Compos. Struct., 120, 65-78. https://doi.org/10.1016/j.compstruct.2014.09.065
- Bhrawy, A.H., Taha, T.M. and Machado, J.A.T. (2015), "A review of operational matrices and spectral techniques for fractional calculus", Nonlinear Dyn., 81(3), 1023-1052. https://doi.org/10.1007/s11071-015-2087-0
- Bidgoli, M.R., Karimi, M.S. and Arani, A.G. (2015), "Viscous fluid induced vibration and instability of FG-CNT-reinforced cylindrical shells integrated with piezoelectric layers", Steel Compos. Struct., Int. J., 19(3), 713-733. https://doi.org/10.12989/scs.2015.19.3.713
- Bodaghi, M. and Shakeri, M. (2012), "An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads", Compos. Struct., 94(5), 1721-1735. https://doi.org/10.1016/j.compstruct.2012.01.009
- Brischetto, S., Tornabene, F., Fantuzzi, N. and Viola, E. (2016), "3D exact and 2D generalized differential quadrature models for free vibration analysis of functionally graded plates and cylinders", Meccanica, 51(9), 2059-2098. https://doi.org/10.1007/s11012-016-0361-y
- Cao, Z.Y. and Tang, S.G. (2012), "Natural Vibration of Functionally Graded Cylindrical Shells With Infinite and Finite Lengths", J. Vib. Acoust., 134(1), 011013. https://doi.org/10.1115/1.4004900
- Fantuzzi, N., Brischetto, S., Tornabene, F. and Viola, E. (2016), "2D and 3D shell models for the free vibration investigation of functionally graded cylindrical and spherical panels", Compos. Struct., 154, 573-590. https://doi.org/10.1016/j.compstruct.2016.07.076
- Guo, J., Shi, D., Wang, Q., Tang, J. and Shuai, C. (2018), "Dynamic analysis of laminated doubly-curved shells with general boundary conditions by means of a domain decomposition method", Int. J. Mech. Sci., 138, 159-186. https://doi.org/10.1016/j.ijmecsci.2018.02.004
- Hosseini-Hashemi, S., Ilkhani, M.R. and Fadaee, M. (2012), "Identification of the validity range of Donnell and Sanders shell theories using an exact vibration analysis of functionally graded thick cylindrical shell panel", Acta Mechanica, 223(5), 1101-1118. https://doi.org/10.1007/s00707-011-0601-0
- Hosseini-Hashemi, S., Derakhshani, M. and Fadaee, M. (2013), "An accurate mathematical study on the free vibration of stepped thickness circular/annular Mindlin functionally graded plates", Appl. Math. Model., 37(6), 4147-4164. https://doi.org/10.1007/s00707-011-0601-0
- Javed, S., Viswanathan, K.K. and Aziz, Z.A. (2016), "Free vibration analysis of composite cylindrical shells with nonuniform thickness walls", Steel Compos. Struct., Int. J., 20(5), 1087-1102. https://doi.org/10.12989/scs.2016.20.5.1087
- Jin, G.Y., Xie, X. and Liu, Z.G. (2014), "The Haar wavelet method for free vibration analysis of functionally graded cylindrical shells based on the shear deformation theory", Compos. Struct., 108, 435-448. https://doi.org/10.1016/j.compstruct.2013.09.044
- Kamarian, S., Sadighi, M., Shakeri, M. and Yas, M.H. (2014), "Free vibration response of sandwich cylindrical shells with functionally graded material face sheets resting on Pasternak foundation", J. Sandw. Struct. Mater., 16(5), 511-533. https://doi.org/10.1177/1099636214541573
- Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., Int. J., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693
- Li, H., Pang, F., Gong, Q. and Teng, Y. (2019), "Free vibration analysis of axisymmetric functionally graded doubly-curved shells with un-uniform thickness distribution based on Ritz method", Compos. Struct., 225, 111145. https://doi.org/10.1016/j.compstruct.2019.111145
- Liu, D.Y., Kitipornchai, S., Chen, W.Q. and Yang, J. (2018), "Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell", Compos. Struct., 189, 560-569. https://doi.org/10.1016/j.compstruct.2018.01.106
- Pang, F., Li, H., Chen, H. and Shan, Y. (2019a), "Free vibration analysis of combined composite laminated cylindrical and spherical shells with arbitrary boundary conditions", Mech. Adv. Mater. Struct., 1-18. https://doi.org/10.1080/15376494.2018.1553258
- Pang, F., Li, H., Cui, J., Du, Y. and Gao, C. (2019b), "Application of flugge thin shell theory to the solution of free vibration behaviors for spherical-cylindrical-spherical shell: A unified formulation", Eur. J. Mech. - A/Solids, 74, 381-393. https://doi.org/10.1016/j.euromechsol.2018.12.003
- Pang, F.Z., Li, H.C., Jing, F.M. and Du, Y. (2019c), "Application of first-order shear deformation theory on vibration analysis of stepped functionally graded paraboloidal shell with general edge constraints", Materials, 12(1), 69. https://doi.org/10.3390/ma12010069
- Qu, Y., Chen, Y., Long, X., Hua, H. and Meng, G. (2013a), "Free and forced vibration analysis of uniform and stepped circular cylindrical shells using a domain decomposition method", Appl. Acoust., 74(3), 425-439. https://doi.org/10.1016/j.apacoust.2012.09.002
- Qu, Y.G., Long, X.H., Yuan, G.Q. and Meng, G. (2013b), "A unified formulation for vibration analysis of functionally graded shells of revolution with arbitrary boundary conditions", Compos. Part B-Eng., 50, 381-402. https://doi.org/10.1016/j.compositesb.2013.02.028
- Razavi, H., Babadi, A.F. and Beni, Y.T. (2017), "Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory", Compos. Struct., 160, 1299-1309. https://doi.org/10.1016/j.compstruct.2016.10.056
- Su, Z., Jin, G.Y., Shi, S.X., Ye, T.G. and Jia, X.Z. (2014), "A unified solution for vibration analysis of functionally graded cylindrical, conical shells and annular plates with general boundary conditions", Int. J. Mech. Sci., 80, 62-80. https://doi.org/10.1016/j.ijmecsci.2014.01.002
- Tang, D., Yao, X.L., Wu, G.X. and Peng, Y. (2017), "Free and forced vibration analysis of multi-stepped circular cylindrical shells with arbitrary boundary conditions by the method of reverberation-ray matrix", Thin-Wall. Struct., 116, 154-168. https://doi.org/10.1016/j.tws.2017.03.023
- Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Methods Appl. Mech. Eng., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011
- Tornabene, F. and Viola, E. (2009), "Free vibration analysis of functionally graded panels and shells of revolution", Meccanica, 44(3), 255-281. https://doi.org/10.1007/s11012-008-9167-x
- Wang, Y.W. and Wu, D.F. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003
- Wang, Q., Cui, X., Qin, B. and Liang, Q. (2017a), "Vibration analysis of the functionally graded carbon nanotube reinforced composite shallow shells with arbitrary boundary conditions", Compos. Struct., 182, 364-379. https://doi.org/10.1016/j.compstruct.2017.09.043
- Wang, Q.S., Shi, D.Y., Liang, Q. and Pang, F.Z. (2017b), "Free vibration of moderately thick functionally graded parabolic and circular panels and shells of revolution with general boundary conditions", Eng. Computat., 34(5), 1598-1641. https://doi.org/10.1108/EC-06-2016-0218
- Yas, M.H. and Aragh, B.S. (2011), "Elasticity solution for free vibration analysis of four-parameter functionally graded fiber orientation cylindrical panels using differential quadrature method", Eur. J. Mech. A-Solids, 30(5), 631-638. https://doi.org/10.1016/j.euromechsol.2010.12.009
- Yas, M.H., Pourasghar, A., Kamarian, S. and Heshmati, M. (2013), "Three-dimensional free vibration analysis of functionally graded nanocomposite cylindrical panels reinforced by carbon nanotube", Mater. Des., 49, 583-590. https://doi.org/10.1016/j.matdes.2013.01.001
- Ye, T.G., Jin, G.Y. and Su, Z. (2016), "Three-dimensional vibration analysis of functionally graded sandwich deep open spherical and cylindrical shells with general restraints", J. Vib. Control, 22(15), 3326-3354. https://doi.org/10.1177/1077546314553608
- Zeighampour, H. and Shojaeian, M. (2017), "Size-dependent vibration of sandwich cylindrical nanoshells with functionally graded material based on the couple stress theory", J. Brazil. Soc. Mech. Sci. Eng., 39(7), 2789-2800. https://doi.org/10.1007/s40430-017-0770-4
- Zghal, S., Frikha, A. and Dammak, F. (2018), "Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures", Appl. Math. Model., 53, 132-155. https://doi.org/10.1016/j.apm.2017.08.021
- Zhang, B., He, Y.M., Liu, D.B., Shen, L. and Lei, J.A. (2015), "Free vibration analysis of four-unknown shear deformable functionally graded cylindrical microshells based on the strain gradient elasticity theory", Compos. Struct., 119, 578-597. https://doi.org/10.1016/j.compstruct.2014.09.032
- Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Thermoelastic and vibration analysis of functionally graded cylindrical shells", Int. J. Mech. Sci., 51(9-10), 694-707. https://doi.org/10.1016/j.ijmecsci.2009.08.001
Cited by
- Bending analysis of the multi-phase nanocomposite reinforced circular plate via 3D-elasticity theory vol.40, pp.4, 2021, https://doi.org/10.12989/scs.2021.40.4.601