DOI QR코드

DOI QR Code

Implementation of Machine Learning-Based Art Work Recommendation Service in Embedded System Environments

임베디드 시스템 환경에서의 머신러닝 기반 미술 작품 추천 서비스 구현

  • Cheon, Mi-Hyeon (Dept. Computer and Communication Engineering, Daegu University) ;
  • Lee, Donghwa (Dept. Computer and Communication Engineering, Daegu University)
  • 천미현 (대구대학교 정보통신공학과) ;
  • 이동화 (대구대학교 정보통신공학부)
  • Received : 2019.08.12
  • Accepted : 2019.10.20
  • Published : 2019.10.28

Abstract

The number of galleries across the country is increasing as interest in cultural life increases due to the increase in national income. However, museum satisfaction is relatively low compared to other services. In this paper, we propose a service that provides preference information based on machine learning in embedded system environment in order to increase museum satisfaction. The proposed algorithm implements an embedded system using Raspberry Pi. Machine learning was used to find works similar to the viewer's favorite works, and several models were compared to select models applicable to embedded systems. By using the preference information, it is possible to effectively organize the gallery exhibition contents to increase the exhibition satisfaction and the re-visit rate of the museum.

국민 소득의 증가로 인해 문화 생활에 대한 관심이 크게 증가하면서 전국 미술관의 수도 함께 증가하고 있다. 하지만 다른 서비스에 비해 미술관 만족도는 상대적으로 낮은 편이다. 본 논문에서는 미술관 만족도를 높이기 위해 임베디드 시스템 환경에서 머신러닝에 기반한 관중들의 선호도에 관련된 정보를 제공하는 서비스를 제안한다. 제안된 알고리즘은 라즈베리 파이를 이용하여 임베디드 시스템을 구현했다. 관람자가 선호하는 작품과 유사한 작품을 찾아내기 위해 머신러닝을 이용하였고 여러 머신러닝 모델을 비교하여 임베디드 시스템에 적용 가능한 모델을 선정했다. 관람자의 취향에 맞는 정보를 활용하여 갤러리 전시 내용을 효과적으로 구성하여 전시 만족도를 높이고 이는 미술관 재 방문율을 높일 수 있을 것이다.

Keywords

References

  1. G. S. Kim & Y. J. Ahn. (2005). Articles : The relationships of cultural tourism attraction attributes, resources interpretation and tourist satisfaction. International Journal of Tourism Management and Sciences, 19(1), 247-272.
  2. S. J. Park, I. S. Jeon & S. L. Moon. (2018). The effect of museum docent program typology on the art appreciation. Journal of Korea Culture Industry, 18(2), 13-21. DOI : 10.35174/JKCI.2018.06.18.2.13
  3. Ministry of Culture, Sports and Tourism. (2016). 2016 The Survey of Cultural Enjoyment. Seoul.
  4. G. H. Byun, H. J. Lee & S. K. Kang. (2014). Service quality recognition and satisfaction of art museum visitors: the case of Gwangju museum of art. Review of Culture & Economy, 17(2), 137-159.
  5. Y. P. Jung & C. S. Yum. (2013). customer relationship management of the internet shopping mall using customer segmentation. Journal of Korean Institute of Information Technology, 11(12), 159-167. DOI : 10.14801/KIITR.2013.11.12.159
  6. S. S. Kim. (2019). A Study on Product Search Service using Feature Point Information based on Image. Journal of Convergence for Information Technology, 9(9), 20-26. DOI : 10.22156/CS4SMB.2019.9.9.020
  7. D. Lowe. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91-110. DOI : 10.1023/B:VISI.0000029664.99615.94
  8. H. Bay, A. Ess, T. Tuytelaars & L. Van Gool. (2008). Speeded up robust features (SURF). Computer Vision and Image Understanding, 110(3), 346-359. DOI : 10.1016/J.CVIU.2007.09.014
  9. M. Kang, W. Choo & S. Moon. (2011). Face recognition based on SURF Interest point extraction algorithm. Journal of the Institute of Electronics Engineers of Korea CI, 48(3), 46-53.
  10. S. G. Lee, J. L. Park, Y. J. Kim & S. H. Choi. (2015). Implementation Of Object Recognition System In Real Time Using SURF and BRISK Algorithm. Information and Control Symposium. (pp. 170-171). Seoul : KIEE.
  11. S. H. Jung. (2013). Touch Recognition based on SIFT Algorithm. Journal of the Korea Society of Computer and Information. 18(11), 69-75. DOI : 10.9708/JKSCI.2013.18.11.069
  12. O. C. Kim & D. J. Kang. (2013). Speed improvement of SURF matching algorithm using reduction of searching range based on PCA. Journal of Korea Multimedia Society, 16(7), 820-828. DOI : 10.9717/KMMS.2013.16.7.820
  13. J. H. Yoo & K. M. Lee. (2015). Patent Image Retrieval Using SURF Direction histograms. Journal of KIISE, 42(1), 33-43. DOI : 10.5626/JOK.2015.42.1.33
  14. K. K. Kim, Y. A. Hur, G. M. Kim, W. H. Yu & H. S. Lim. (2017). Detail Focused Image Classifier Model for Traditional Images. Journal of the Korea Convergence Society, 8(12), 85-92. DOI : 10.15207/JKCS.2017.8.12.085
  15. N. van Noord, E. Hendriks & E. Postma. (2015. July). Toward Discovery of the Artist's Style: Learning to recognize artists by their artworks. IEEE Signal Processing Magazine, 32, 46-54. DOI : 10.1109/MSP.2015.2406955
  16. F. N. landola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally & K. Keutzer. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. arXiv preprint arXiv:1602.07360.