Acknowledgement
Supported by : King Abdulaziz City for Science and Technology (KACST)
References
- ACI 318-14 (2014), Building Code Requirements for Structural Concrete, ACI Committee 318, American Concrete Institute, Farmington Hills, Michigan, USA.
- Ahmad, S. and Bhattacharjee, B. (1995), "A simple arrangement and procedure for in-situ measurement of corrosion rate of rebar embedded in concrete", Corros. Sci., 37(5), 781-791. https://doi.org/10.1016/0010-938X(95)80008-5
- Ahmad, S., Assaggaf, R.A., Maslehuddin, M., Al-Amoudi, O.S.B., Adekunle, S.K. and Ali, S.I. (2017), "Effects of carbonation pressure and duration on strength evolution of concrete subjected to accelerated carbonation curing", Constr. Build. Mater., 136, 565-573. https://doi.org/10.1016/j.conbuildmat.2017.01.069
- Al-Amoudi, O.S.B., Rasheeduzzafar, Maslehuddin, M. and Al-Mana, A.I. (1993), "Prediction of long-term corrosion resistance of plain and blended cement concretes", ACI Mater. J., 90(6), 564-570.
- Al-Amoudi, O.S.B. (1995), "Performance of 15 reinforced concrete mixtures in magnesium-sodium sulphate environments", Constr. Build. Mater., 9(3), 149-158. https://doi.org/10.1016/0950-0618(95)00007-3
- Al-Amoudi, O.S.B., Maslehuddin, M., Al-Hozaimy, A., Al-Neghaimesh, A. Khushefati, W., Al-Saiyed, S. and Al-Shuraim, A. (2006), "Materials and construction requirements in the Saudi building code", Proceedings of the 8th International Conference on Concrete in Hot and Aggressive Environments, Manama, Bahrain, November.
- Ashish, D.K., Singh, B. and Verma, S.K. (2016), "The effect of attack of chloride and sulphate on ground granulated blast furnace slag concrete", Adv. Concr. Constr., 4(2), 101-121.
- ASTM C 618 (2017), Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA.
- ASTM C150 (2018), Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA.
- ASTM C33 (2018), Standard Specification for Concrete Aggregates, ASTM International, West Conshohocken, PA.
- ASTM C39 (2018), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA.
- BS EN 12390 (2009). Hardened Concrete-Part 8: Depth of Penetration of Water under Pressure, BSI, London, UK.
- Celik, K., Jackson, M.D., Mancio, M., Meral, C., Emwas, A.H., Mehta, P.K. and Monteiro, P.J.M. (2014), "High-volume natural volcanic pozzolan and limestone powder as partial replacements for Portland cement in self-compacting and sustainable concrete", Cement Concrete Compos., 45, 136-147. https://doi.org/10.1016/j.cemconcomp.2013.09.003
- Colak, A. (2003), "Characteristics of pastes from a Portland cement containing different amounts of natural pozzolan", Cement Concrete Res., 33(4), 585-593. https://doi.org/10.1016/S0008-8846(02)01027-X
- Crank, J. (1975), The Mathematics of Diffusion, 2nd Edition, Oxford University Press, New York, USA.
- Djamila, B., Othmane, B., Said, K. and El-Hadj, K. (2018), "Combined effect of mineral admixture and curing temperature on mechanical behavior and porosity of SCC", Adv. Concr. Constr., 6(1), 69-85. https://doi.org/10.12989/acc.2018.6.1.069
- Fajardo, G., Valdez, P. and Pacheco, J. (2009), "Corrosion of steel rebar embedded in natural pozzolan based mortars exposed to chlorides", Constr. Build. Mater., 23(2), 768-774. https://doi.org/10.1016/j.conbuildmat.2008.02.023
- Ghrici, M., Kenai, S. and Said-Mansour, M. (2007), "Mechanical properties and durability of mortar and concrete containing natural pozzolan", Cement Concrete Compos., 29(7), 542-549. https://doi.org/10.1016/j.cemconcomp.2007.04.009
- Hewlett, P.C (2003), Lea's Chemistry of Cement and Concrete, 4th Edition, Elsevier, UK.
- Hossain, K.M.A., and Lachemi, M. (2006), "Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment", Cement Concrete Res., 36(6), 1123-1133. https://doi.org/10.1016/j.cemconres.2006.03.010
- Jenaa, T. and Panda, K.C. (2018), "Mechanical and durability properties of marine concrete using fly ash and silpozz", Adv. Concr. Constr., 6(1), 47-68. https://doi.org/10.12989/acc.2018.6.1.047
- Kaid, N., Cyr, M., Julien, S. and Khelafi, H. (2009), "Durability of concrete containing a natural pozzolan as defined by a performance-based approach", Constr. Build. Mater., 23(12), 3457-3467. https://doi.org/10.1016/j.conbuildmat.2009.08.002
- Khan, M.I. and Alhozaimy, A.M. (2011), "Properties of natural pozzolan and its potential utilization in environmental friendly concrete", Can. J. Civil Eng., 38(1), 71-78. https://doi.org/10.1139/L10-112
- Khan, S.M.S. (2013), "Production of sustainable concrete using indigenous Saudi natural pozzolans", MS Dissertation, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.
-
Kilinckale, F.M. (1997), "The effect of
$MgSO_4$ and HCL solutions on the strength and durability of pozzolan cement mortars", Cement Concrete Res., 27(12), 1911-1918. https://doi.org/10.1016/S0008-8846(97)00208-1 - Lenkaa, S. and Panda, K.C. (2017), "Effect of metakaolin on the properties of conventional and self compacting concrete", Adv. Concr. Constr., 5(1), 31-48. https://doi.org/10.12989/acc.2017.5.1.31
- Moon, J., Bae, S., Celik, K., Yoon, S., Kim, K.H., Kim, K.S. and Monteiro, P.J.M. (2014), "Characterization of natural pozzolanbased geopolymeric binders", Cement Concrete Compos., 53, 97-104. https://doi.org/10.1016/j.cemconcomp.2014.06.010
- Moufti, M.R., Sabtan, A.A., El-Mahdy, O.R. and Shehata, W.M. (2000), "Assessment of industrial utilization of scoria materials in central Harrat Rahat, Saudi Arabia", Eng. Geol., 57(3-4), 155-162. https://doi.org/10.1016/S0013-7952(00)00024-7
- Mouli, H. and Khelafi, H. (2008), "Performance Characteristics of light weight aggregate concrete containing natural pozzolan" Build. Environ., 43 (1), pp. 31-36. https://doi.org/10.1016/j.buildenv.2006.11.038
- Najami, M., Sobhani, J., Ahmadi, B. and Shekarchi, M. (2012), "An experimental study on durability of concrete containing zeolite as a highly reactive natural pozzolan", Constr. Build. Mater., 35, 1023-1033. https://doi.org/10.1016/j.conbuildmat.2012.04.038
- Najimi, M., Jamshid, I.M. and Pourkhorshidi, A. (2008), "Durability of concretes containing natural pozzolan", Pro. Inst. Civil Eng. - Constr. Mater., 161(3), 113-118.
- Nas, M. and Kurbetc, S. (2018), "Durability properties of concrete containing metakaolin", Adv. Concr. Constr, 6(2), 159-175. https://doi.org/10.12989/ACC.2018.6.2.159
- Pekmezci, B.Y. and Akyuz, S. (2004), "Optimum usage of a natural pozzolan for the maximum compressive strength of concrete", Cement Concrete Res., 34(12), 2175-2179. https://doi.org/10.1016/j.cemconres.2004.02.008
- Rahmani, H. and Ramazanianpour, A.A. (2008), "Effect of binary cement replacement materials on sulphuric acid resistance of dense concretes", Mag. Concete. Res., 60(2), 145-155. https://doi.org/10.1680/macr.2008.60.2.145
- Rodriguez, R.E. and Uribe-Afif, R. (2002), "Importance of using natural pozzolan on concrete durability", Cement Concrete Res., 32(12), 1851-1858. https://doi.org/10.1016/S0008-8846(01)00714-1
- Roobol, M.J., Pint, J.J., Al-Shanti, M.A., Al-Juaid A.J., Al-Amoudi, S.A. and Pint, S. (2002), "Preliminary survey for Lava-Tube Caves on Harrat Kishb, Kingdom of Saudi Arabia", Open-File Report, Saudi Geological Survey.
- Sabtan, A.A. and Shehata, W.M. (2000), "Evaluation of engineering properties of scoria in central Harrat Rahat, Saudi Arabia", B. Eng. Geol. Environ., 59(3), 219-225. https://doi.org/10.1007/s100640000061
- Shannag, M.J. and Asim, Y. (1995), "Properties of pastes, mortars and concretes containing natural pozzolan", Cement Concrete Res., 25(3), 647-657. https://doi.org/10.1016/0008-8846(95)00053-F
- Siad, H., Mesbah, H.A., Khelafi, H., Kamali-Bernard, S. and Mouli, M. (2010), "Effects of mineral admixture on resistance to sulphuric and hydrochloric acid attack in self-compacting concrete", Can. J. Civil Eng., 37(3), 441-449. https://doi.org/10.1139/L09-157
- Stern, M. and Geary, A.L. (1957), "A theoretical analysis of the slope of the polarization curves", J. Electrochem. Soc., 104(1), 56-63. https://doi.org/10.1149/1.2428496
- Sulapha, P., Wong, S.F., Wee, T.H. and Swaddiwudhipong, S. (2003), "Carbonation of concrete containing mineral admixtures", J. Mater. Civil Eng., 15(2), 134-143. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(134)
- Thomas, M.D.A. and Matthews, J.D. (1992), "Carbonation of fly ash concrete", Mag. Concr. Res., 44(160), 217-228. https://doi.org/10.1680/macr.1992.44.160.217
- Uzal, B. and Turanli, L. (2003), "Studies on blended cements containing a high volume of natural pozzolan", Cement Concrete Res., 33(11), 1777-1781. https://doi.org/10.1016/S0008-8846(03)00173-X
- Wlison, M.L. and Kosmatka, S.H. (2016), Design and Control of Concrete Mixtures, 16th Edition, Portland Cement Association, Illinois, USA.
- Yahiaoui, W., Kenai, S., Menadi, B. and Kadri, E.H. (2017), "Durability of self compacted concrete containing slag in hot climate", Adv. Concr. Constr., 5(3), 271-288. https://doi.org/10.12989/acc.2017.5.3.271
- Yu, L., Zhoua, S. and Deng, W. (2015), "Properties and pozzolanic reaction degree of tuff in cement-based composite", Adv. Concr. Constr., 3(1), 71-90. https://doi.org/10.12989/acc.2015.3.1.071
Cited by
- The potential use of pumice in mine backfill vol.1, 2019, https://doi.org/10.1017/exp.2020.61
- Optimized AI controller for reinforced concrete frame structures under earthquake excitation vol.11, pp.1, 2021, https://doi.org/10.12989/acc.2021.11.1.001
- Effect of mineralogical composition of clinoptilolite-bearing tuffs on their performance as a natural pozzolan in cementitious systems vol.12, pp.1, 2019, https://doi.org/10.12989/acc.2021.12.1.025