Acknowledgement
Supported by : CAPES, CNPq
References
- ABAQUS (2011), Standard User's Manual, Version 6.11, Hibbit, Karlsson and Sorensen Inc, Pawtucket, RI, USA.
- ACI Committee 209 (2008), Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete, American Concrete Institute, Farmington Hills, MI, USA.
- Ban, H., Uy, B., Pathirana, S.W., Henderson, I., Mirza, O. and Zhu, X. (2015), "Time-dependent behavior of composite beams with blind bolts under sustained loads", J. Constr. Steel Res., 112, 196-207. https://doi.org/10.1016/j.jcsr.2015.05.004.
- Baskar, K., Shanmugam, N.E. and Thevendran, V. (2002), "Finite element analysis of steel-concrete composite plate girder", J. Struct. Eng., 128(9), 1158-1168. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1158).
- Bazant, Z.P. and Bajewa, S. (1995), "Creep and shrinkage prediction model for analysis and design of concrete structures- Model B3", Mater. Struct., 28(180), 357-365. https://doi.org/10.1007/bf02473152.
- Bazant, Z.P. and Li, G. (2008), "Unbiased statistical comparison of creep and shrinkage prediction models", ACI Mater. J., 106(6), 610-621.
- Bazant, Z.P. and Panula, L. (1978), "Practical prediction of time dependent deformations of concrete, Part I," Mater. Struct., 11(5), 307-316. https://doi.org/10.1007/BF02473872.
- Bazant, Z.P. and Prasannan, S. (1989), "Solidification theory for aging creep II: verification and application" J. Eng. Mech., 115(8), 1704-1725. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1691).
- Bradford, M.A. and Gilbert, R.I. (1991), "Time-dependent behavior of simply-supported steel-concrete composite beams", Mag. Concrete Res., 43(157), 265-274. https://doi.org/10.1680/macr.1991.43.157.265.
- Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007). "Hybrid procedure for cracking and time-dependent effects in composite frames at service load", J. Struct. Eng., ASCE, 133(2), 166-175. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(166).
- Comite Euro-International du Beton CEB (1993), CEB-FIP Model Code 1990, CEB Bulletin d'Information No 213/214, Committee European du Beton-Federation Internationale de la Precontrainte, Lausanne, Switzerland.
- Comite Euro-International du Beton CEB (1999), Structural Concrete-Textbook on Behavior, Design and Performance, Updated Knowledge of the CEB-FIP Model code 1990, fib bulletin 2, V. 2, Federation Internationale du Beton, Lausanne, Switzerland.
- Damjanic, F. and Owen, D.R.J. (1984), "Practical considerations for modeling of post-cracking behavior for finite element analysis of reinforced concrete structures", Proceedings of the International Conference on Computer-aided Analysis and Design of Concrete Structures, Swansea, U.K.
- Dias, M., Tamayo, J.L.P., Morsch, I.B. and Awruch, M.A. (2015), "Time dependent finite element analysis of steel-concrete composite beams considering partial interaction", Comput. Concrete, 15(4), 687-707. https://doi.org/10.12989/cac.2015.15.4.687.
- EC2 Standardization European Committee (2004), Eurocode 2 EN 1991-1-1 Design of Concrete Structures, Part 1-1: General Rules and Rules for Buildings, CEN, Brussels, Belgium.
- Erkmen, R.E. and Bradford, M.A. (2011), "Time-dependent creep and shrinkage analysis of composite beams curved in plan", Comput. Struct., 89(1-2), 67-77. https://doi.org/10.1016/j.compstruc.2010.08.004.
- Fan J., Nie, J., Li, Q. and Wang, H. (2010), "Long-term behavior of composite beams under positive and negative bending. I: Experimental study", J. Struct. Eng., 136(7), 849-857. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000175.
- Federation International du Beton FIB (2012), FIB-2010 Model Code 2010, Bulletin 65, V. 1, Federation Internationale du Beton, Lausanne, Switzerland.
- Gadner, N.J. and Lockman, M.J. (2001), "Design provisions for drying shrinkage and creep of normal strength concrete", ACI Mater. J., 98(2), 159-167.
- Gardner, N.J. (2004), "Comparison of prediction provisions for drying shrinkage and creep of bormal strength concretes", Can. J. Civil Eng., 31(5), 767-775. https://doi.org/10.1139/l04-046.
- Gilbert, R.I. and Bradford, M.A. (1995), "Time-dependent behavior of continuous composite beams at service loads", J. Struct. Eng., 121(2), 319-327. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(319).
- Gilbert, R.I., Bradford, M.A., Gholamhoseine, A. and Chang, Z.T. (2012), "Effect of shrinkage on the long-term stresses and deformations of composite concrete slabs", Eng. Struct., 40, 9-19. https://doi.org/10.1016/j.engstruct.2012.02.016.
- Giussani, F. and Mola, F. (2010), "Displacement method for the long-term analysis of steel-concrete composite beams with flexible connection", J. Struct. Eng., 136(3), 265-274. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000109.
- Jiang, M., Qiu, W. and Zhang, Z. (2009), "Time-dependent analysis of steel-concrete composite beams", International Conference on Engineering Computation, Hong Kong, China, May.
- Jurkiewiez, B., Buzon, S. and Sieffert, J. G. (2005), "Incremental viscoelastic analysis of composite beams with partial interaction", Comput. Struct., 83(21-22), 1780-1791. https://doi.org/10.1016/j.compstruc.2005.02.021.
- Kaklauskas, G., Gribniak, V., Bacinskas, D. and Vainiunas, P. (2009), "Shrinkage influence on tension stiffening in concrete members", Eng. Struct., 31(6), 1305-1312. https://doi.org/10.1016/j.engstruct.2008.10.007.
- Liang, Q.Q., Uy, B., Bradford, M.A. and Ronagh, H.R. (2005), "Strength analysis of steel-concrete composite beams in combined bending and shear", J. Struct. Eng., 131(10), 1593-1600. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:10(1593).
- Liu, X., Bradford, M.A. and Erkmen E. (2013), "Time-dependent response of spatially curved steel-concrete composite members. I: Computational Modeling", J. Struct. Eng., 139(12), 1-11. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000698.
- Macorini, L, Fragiacomo, M., Amadio, C. and Izzuddin, B.A. (2006), "Long-term analysis of steel-concrete composite beams: FE modeling for effective width evaluation", Eng. Struct., 28(8), 1110-1121. https://doi.org/10.1016/j.engstruct.2005.12.002.
- Moreno, J.C.A. (2016), "Numerical analysis of steel-concrete composite beams by the finite element method: models for the long-term effect and internal prestressing", M.Sc. Dissertation, Federal University of Rio Grande do Sul, Porto Alegre. (In Portuguese)
- Moscoso, A.M., Tamayo, J.L.P. and Morsch, I.B. (2017), "Numerical simulation of external pre-stressed steel concrete composite beams", Comput. Concrete, 19(2), 191-201. https://doi.org/10.12989/cac.2017.19.2.191.
- Muller, H.S. and Hilsdorf (1990), Evaluation of the Time Dependent of Behavior of Concrete, Bulletin d'ínformation No 199, Committee Euro-International du Beton (CEB), Lausanne, Switzerland.
- Nguyen, Q. and Hjiaj, M. (2016), "Nonlinear time-dependent behavior of composite steel-concrete beams", J. Struct. Eng., 142(5), 1-11. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001432.
- Partov, D. and Kantchev, V. (2011), "Level of creep sensitivity in composite steel-concrete composite beams according to ACI- 209R-92 model, comparison with Eurocode-4 (CEB MC90-99)", Eng. Mech., 18(2), 91-116.
- Ramnavas, M.P., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2015), "Cracked span length beam element for service load analysis of steel-concrete composite bridges", Comput. Struct., 157, 201-208. https://doi.org/10.1016/j.compstruc.2015.05.024.
- Reginato, L.H., Tamayo, J.L.P. and Morsch, I.B. (2018), "Finite element study of effective width in steel-concrete composite beams under long-term service loads", Latin. Am. J. Solid. Struct., 15(8), 1-25. http://dx.doi.org/10.1590/1679-78254599.
- Rex, O.C. and Easterling, W.S. (2000), "Behavior and modeling of reinforced composite slab in tension", J. Struct. Eng., 126(7), 764-771. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:7(764).
- Sakr, M.A. and Sakla, S.S. (2008), "Long term deflection of cracked composite beams with nonlinear partial shear interaction: I-Finite element modeling", J. Constr. Steel Res., 64(12), 1446-1455. https://doi.org/10.1016/j.jcsr.2008.01.003.
- Sousa, H., Bento, J. and Figueiras, J. (2013), "Construction assessment and long-term prediction of prestressed concrete bridges based on monitoring data", Eng. Struct., 52, 26-37. https://doi.org/10.1016/j.engstruct.2013.02.003.
- Tamayo, J.L.P. and Awruch, M.A. (2016), "Numerical simulation of reinforced concrete nuclear containment under extreme loads", Struct. Eng. Mech., 58(5), 799-823. https://doi.org/10.12989/sem.2016.58.5.799.
- Tamayo, J.L.P., Franco, M.I., Morsch, I.B., Desir, J.M. and Wayar, A.M. (2019), "Some aspects of numerical modeling of steelconcrete composite beams with prestressed tendons", Latin. Am. J. Solid. Struct., 16(7), 1-19. http://dx.doi.org/10.1590/1679-78255599.
- Tamayo, J.L.P., Morsch, I.B. and Awruch, M.A. (2015), "Shorttime numerical analysis of steel-concrete composite beams", J. Braz. Soc. Mech. Sci. Eng., 37(4), 1097-1109. https://doi.org/10.1007/s40430-014-0237-9.
- Theiner, Y., Andreatta, A. and Hofstetter, G. (2014), "Evaluation of models for estimating concrete strains due to drying shrinkage", Struct. Concrete, 15(4), 461-468. https://doi.org/10.1002/suco.201300082.
- Varshney, L.K., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2013), "Control of time-dependent effects in steel-concrete composite frames", Int. J. Steel Struct., 13(4), 589-606. https://doi.org/10.1007/s13296-013-4002-1.
- Wang, W.W., Dai, J.G., Li, G. and Huang, C.K. (2011), "Longterm behavior of prestressed old-new concrete composite beams", J. Bridge Eng., 16(2), 275-285. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000152.
- Wendner, R., Hubler, M.H. and Bazant, Z.P. (2015), "Optimization method, choice of form and uncertainty quantification of model B4 using laboratory and multi-decade bridge databases", Mater. Struct., 48(4), 771-796. https://doi.org/10.1617/s11527-014-0515-0.
- Xiang, T., Yang, C. and Zhao, G. (2016), "Stochastic creep and shrinkage effect of steel-concrete composite beam", Adv. Struct. Eng., 18(8), 1129-1140. https://doi.org/10.1260/1369-4332.18.8.1129.
- Xu, L., Nie, X. and Tao, M. (2018), "Rotational modeling for cracking behavior of RC slabs in composite beams subjected to a hogging moment", Constr. Build. Mater., 192, 357-365. https://doi.org/10.1016/j.conbuildmat.2018.10.163.
- Zhu, L. and Su, R.K.L. (2017), "Analytical solutions for composite beams with slip, shear-lag and time-dependent effects", Eng. Struct., 152, 559-578. https://doi.org/10.1016/j.engstruct.2017.08.071.
Cited by
- Calculation of Deflection and Stress of Assembled Concrete Composite Beams under Shrinkage and Creep and Its Application in Member Design Optimization vol.25, pp.9, 2019, https://doi.org/10.1007/s12205-021-2092-4