DOI QR코드

DOI QR Code

Statistical bias indicators for the long-term displacement of steel-concrete composite beams

  • Moreno, Julian A. (Departament of Civil Engineering, Engineering School, Federal University of Rio Grande do Sul) ;
  • Tamayo, Jorge L.P. (Departament of Civil Engineering, Engineering School, Federal University of Rio Grande do Sul) ;
  • Morsch, Inacio B. (Departament of Civil Engineering, Engineering School, Federal University of Rio Grande do Sul) ;
  • Miranda, Marcela P. (Departament of Civil Engineering, Engineering School, Federal University of Rio Grande do Sul) ;
  • Reginato, Lucas H. (Departament of Civil Engineering, Engineering School, Federal University of Rio Grande do Sul)
  • Received : 2018.11.23
  • Accepted : 2019.09.16
  • Published : 2019.10.25

Abstract

Steel-concrete composite beams are widely employed in constructions and their performance at the serviceability stage is of concern among practitioners and design regulations. In this context, an accurate evaluation of long-term deflections via various rheological concrete models is needed. In this work, the performance and predict capability of some concrete creep and shrinkage models ACI, CEB, B3, FIB and GL2000 are ascertained, and compared by using statistical bias indicators. Ten steel-concrete composite beams with existing experimental and numerical results are then modeled for this purpose. The proposed modeling technique uses the finite element method, where the concrete slab and steel beam are modeled with shell finite elements. Concrete is considered as an aging viscoelastic material and cracking is treated with the common smeared approach. The results show that when the experimental ultimate shrinkage strain is used for calibration, all studied rheological models predict nearly similar deflections, which agree with the experimental data. In contrast, significance differences are encountered for some models, when none calibration is made prior to. A value between twenty and thirty times the cracking strain is recommended for the ultimate tensile strain in the tension stiffening model. Also, increasing the relative humidity and decreasing the ambient temperature can lead to a substantial reduction of slab cracking for beams under negative flexure. Finally, there is not a unique rheological model that clearly excels in all scenarios.

Keywords

Acknowledgement

Supported by : CAPES, CNPq

References

  1. ABAQUS (2011), Standard User's Manual, Version 6.11, Hibbit, Karlsson and Sorensen Inc, Pawtucket, RI, USA.
  2. ACI Committee 209 (2008), Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete, American Concrete Institute, Farmington Hills, MI, USA.
  3. Ban, H., Uy, B., Pathirana, S.W., Henderson, I., Mirza, O. and Zhu, X. (2015), "Time-dependent behavior of composite beams with blind bolts under sustained loads", J. Constr. Steel Res., 112, 196-207. https://doi.org/10.1016/j.jcsr.2015.05.004.
  4. Baskar, K., Shanmugam, N.E. and Thevendran, V. (2002), "Finite element analysis of steel-concrete composite plate girder", J. Struct. Eng., 128(9), 1158-1168. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1158).
  5. Bazant, Z.P. and Bajewa, S. (1995), "Creep and shrinkage prediction model for analysis and design of concrete structures- Model B3", Mater. Struct., 28(180), 357-365. https://doi.org/10.1007/bf02473152.
  6. Bazant, Z.P. and Li, G. (2008), "Unbiased statistical comparison of creep and shrinkage prediction models", ACI Mater. J., 106(6), 610-621.
  7. Bazant, Z.P. and Panula, L. (1978), "Practical prediction of time dependent deformations of concrete, Part I," Mater. Struct., 11(5), 307-316. https://doi.org/10.1007/BF02473872.
  8. Bazant, Z.P. and Prasannan, S. (1989), "Solidification theory for aging creep II: verification and application" J. Eng. Mech., 115(8), 1704-1725. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1691).
  9. Bradford, M.A. and Gilbert, R.I. (1991), "Time-dependent behavior of simply-supported steel-concrete composite beams", Mag. Concrete Res., 43(157), 265-274. https://doi.org/10.1680/macr.1991.43.157.265.
  10. Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007). "Hybrid procedure for cracking and time-dependent effects in composite frames at service load", J. Struct. Eng., ASCE, 133(2), 166-175. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(166).
  11. Comite Euro-International du Beton CEB (1993), CEB-FIP Model Code 1990, CEB Bulletin d'Information No 213/214, Committee European du Beton-Federation Internationale de la Precontrainte, Lausanne, Switzerland.
  12. Comite Euro-International du Beton CEB (1999), Structural Concrete-Textbook on Behavior, Design and Performance, Updated Knowledge of the CEB-FIP Model code 1990, fib bulletin 2, V. 2, Federation Internationale du Beton, Lausanne, Switzerland.
  13. Damjanic, F. and Owen, D.R.J. (1984), "Practical considerations for modeling of post-cracking behavior for finite element analysis of reinforced concrete structures", Proceedings of the International Conference on Computer-aided Analysis and Design of Concrete Structures, Swansea, U.K.
  14. Dias, M., Tamayo, J.L.P., Morsch, I.B. and Awruch, M.A. (2015), "Time dependent finite element analysis of steel-concrete composite beams considering partial interaction", Comput. Concrete, 15(4), 687-707. https://doi.org/10.12989/cac.2015.15.4.687.
  15. EC2 Standardization European Committee (2004), Eurocode 2 EN 1991-1-1 Design of Concrete Structures, Part 1-1: General Rules and Rules for Buildings, CEN, Brussels, Belgium.
  16. Erkmen, R.E. and Bradford, M.A. (2011), "Time-dependent creep and shrinkage analysis of composite beams curved in plan", Comput. Struct., 89(1-2), 67-77. https://doi.org/10.1016/j.compstruc.2010.08.004.
  17. Fan J., Nie, J., Li, Q. and Wang, H. (2010), "Long-term behavior of composite beams under positive and negative bending. I: Experimental study", J. Struct. Eng., 136(7), 849-857. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000175.
  18. Federation International du Beton FIB (2012), FIB-2010 Model Code 2010, Bulletin 65, V. 1, Federation Internationale du Beton, Lausanne, Switzerland.
  19. Gadner, N.J. and Lockman, M.J. (2001), "Design provisions for drying shrinkage and creep of normal strength concrete", ACI Mater. J., 98(2), 159-167.
  20. Gardner, N.J. (2004), "Comparison of prediction provisions for drying shrinkage and creep of bormal strength concretes", Can. J. Civil Eng., 31(5), 767-775. https://doi.org/10.1139/l04-046.
  21. Gilbert, R.I. and Bradford, M.A. (1995), "Time-dependent behavior of continuous composite beams at service loads", J. Struct. Eng., 121(2), 319-327. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(319).
  22. Gilbert, R.I., Bradford, M.A., Gholamhoseine, A. and Chang, Z.T. (2012), "Effect of shrinkage on the long-term stresses and deformations of composite concrete slabs", Eng. Struct., 40, 9-19. https://doi.org/10.1016/j.engstruct.2012.02.016.
  23. Giussani, F. and Mola, F. (2010), "Displacement method for the long-term analysis of steel-concrete composite beams with flexible connection", J. Struct. Eng., 136(3), 265-274. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000109.
  24. Jiang, M., Qiu, W. and Zhang, Z. (2009), "Time-dependent analysis of steel-concrete composite beams", International Conference on Engineering Computation, Hong Kong, China, May.
  25. Jurkiewiez, B., Buzon, S. and Sieffert, J. G. (2005), "Incremental viscoelastic analysis of composite beams with partial interaction", Comput. Struct., 83(21-22), 1780-1791. https://doi.org/10.1016/j.compstruc.2005.02.021.
  26. Kaklauskas, G., Gribniak, V., Bacinskas, D. and Vainiunas, P. (2009), "Shrinkage influence on tension stiffening in concrete members", Eng. Struct., 31(6), 1305-1312. https://doi.org/10.1016/j.engstruct.2008.10.007.
  27. Liang, Q.Q., Uy, B., Bradford, M.A. and Ronagh, H.R. (2005), "Strength analysis of steel-concrete composite beams in combined bending and shear", J. Struct. Eng., 131(10), 1593-1600. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:10(1593).
  28. Liu, X., Bradford, M.A. and Erkmen E. (2013), "Time-dependent response of spatially curved steel-concrete composite members. I: Computational Modeling", J. Struct. Eng., 139(12), 1-11. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000698.
  29. Macorini, L, Fragiacomo, M., Amadio, C. and Izzuddin, B.A. (2006), "Long-term analysis of steel-concrete composite beams: FE modeling for effective width evaluation", Eng. Struct., 28(8), 1110-1121. https://doi.org/10.1016/j.engstruct.2005.12.002.
  30. Moreno, J.C.A. (2016), "Numerical analysis of steel-concrete composite beams by the finite element method: models for the long-term effect and internal prestressing", M.Sc. Dissertation, Federal University of Rio Grande do Sul, Porto Alegre. (In Portuguese)
  31. Moscoso, A.M., Tamayo, J.L.P. and Morsch, I.B. (2017), "Numerical simulation of external pre-stressed steel concrete composite beams", Comput. Concrete, 19(2), 191-201. https://doi.org/10.12989/cac.2017.19.2.191.
  32. Muller, H.S. and Hilsdorf (1990), Evaluation of the Time Dependent of Behavior of Concrete, Bulletin d'ínformation No 199, Committee Euro-International du Beton (CEB), Lausanne, Switzerland.
  33. Nguyen, Q. and Hjiaj, M. (2016), "Nonlinear time-dependent behavior of composite steel-concrete beams", J. Struct. Eng., 142(5), 1-11. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001432.
  34. Partov, D. and Kantchev, V. (2011), "Level of creep sensitivity in composite steel-concrete composite beams according to ACI- 209R-92 model, comparison with Eurocode-4 (CEB MC90-99)", Eng. Mech., 18(2), 91-116.
  35. Ramnavas, M.P., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2015), "Cracked span length beam element for service load analysis of steel-concrete composite bridges", Comput. Struct., 157, 201-208. https://doi.org/10.1016/j.compstruc.2015.05.024.
  36. Reginato, L.H., Tamayo, J.L.P. and Morsch, I.B. (2018), "Finite element study of effective width in steel-concrete composite beams under long-term service loads", Latin. Am. J. Solid. Struct., 15(8), 1-25. http://dx.doi.org/10.1590/1679-78254599.
  37. Rex, O.C. and Easterling, W.S. (2000), "Behavior and modeling of reinforced composite slab in tension", J. Struct. Eng., 126(7), 764-771. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:7(764).
  38. Sakr, M.A. and Sakla, S.S. (2008), "Long term deflection of cracked composite beams with nonlinear partial shear interaction: I-Finite element modeling", J. Constr. Steel Res., 64(12), 1446-1455. https://doi.org/10.1016/j.jcsr.2008.01.003.
  39. Sousa, H., Bento, J. and Figueiras, J. (2013), "Construction assessment and long-term prediction of prestressed concrete bridges based on monitoring data", Eng. Struct., 52, 26-37. https://doi.org/10.1016/j.engstruct.2013.02.003.
  40. Tamayo, J.L.P. and Awruch, M.A. (2016), "Numerical simulation of reinforced concrete nuclear containment under extreme loads", Struct. Eng. Mech., 58(5), 799-823. https://doi.org/10.12989/sem.2016.58.5.799.
  41. Tamayo, J.L.P., Franco, M.I., Morsch, I.B., Desir, J.M. and Wayar, A.M. (2019), "Some aspects of numerical modeling of steelconcrete composite beams with prestressed tendons", Latin. Am. J. Solid. Struct., 16(7), 1-19. http://dx.doi.org/10.1590/1679-78255599.
  42. Tamayo, J.L.P., Morsch, I.B. and Awruch, M.A. (2015), "Shorttime numerical analysis of steel-concrete composite beams", J. Braz. Soc. Mech. Sci. Eng., 37(4), 1097-1109. https://doi.org/10.1007/s40430-014-0237-9.
  43. Theiner, Y., Andreatta, A. and Hofstetter, G. (2014), "Evaluation of models for estimating concrete strains due to drying shrinkage", Struct. Concrete, 15(4), 461-468. https://doi.org/10.1002/suco.201300082.
  44. Varshney, L.K., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2013), "Control of time-dependent effects in steel-concrete composite frames", Int. J. Steel Struct., 13(4), 589-606. https://doi.org/10.1007/s13296-013-4002-1.
  45. Wang, W.W., Dai, J.G., Li, G. and Huang, C.K. (2011), "Longterm behavior of prestressed old-new concrete composite beams", J. Bridge Eng., 16(2), 275-285. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000152.
  46. Wendner, R., Hubler, M.H. and Bazant, Z.P. (2015), "Optimization method, choice of form and uncertainty quantification of model B4 using laboratory and multi-decade bridge databases", Mater. Struct., 48(4), 771-796. https://doi.org/10.1617/s11527-014-0515-0.
  47. Xiang, T., Yang, C. and Zhao, G. (2016), "Stochastic creep and shrinkage effect of steel-concrete composite beam", Adv. Struct. Eng., 18(8), 1129-1140. https://doi.org/10.1260/1369-4332.18.8.1129.
  48. Xu, L., Nie, X. and Tao, M. (2018), "Rotational modeling for cracking behavior of RC slabs in composite beams subjected to a hogging moment", Constr. Build. Mater., 192, 357-365. https://doi.org/10.1016/j.conbuildmat.2018.10.163.
  49. Zhu, L. and Su, R.K.L. (2017), "Analytical solutions for composite beams with slip, shear-lag and time-dependent effects", Eng. Struct., 152, 559-578. https://doi.org/10.1016/j.engstruct.2017.08.071.

Cited by

  1. Calculation of Deflection and Stress of Assembled Concrete Composite Beams under Shrinkage and Creep and Its Application in Member Design Optimization vol.25, pp.9, 2019, https://doi.org/10.1007/s12205-021-2092-4