DOI QR코드

DOI QR Code

Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT

  • Addou, Farouk Yahia (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Meradjah, Mustapha (Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Benachour, Abdelkader (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University)
  • Received : 2019.07.21
  • Accepted : 2019.09.11
  • Published : 2019.10.25

Abstract

This work investigates the effect of Winkler/Pasternak/Kerr foundation and porosity on dynamic behavior of FG plates using a simple quasi-3D hyperbolic theory. Four different patterns of porosity variations are considered in this study. The used quasi-3D hyperbolic theory is simple and easy to apply because it considers only four-unknown variables to determine the four coupled vibration responses (axial-shear-flexion-stretching). A detailed parametric study is established to evaluate the influences of gradient index, porosity parameter, stiffness of foundation parameters, mode numbers, and geometry on the natural frequencies of imperfect FG plates.

Keywords

References

  1. Abdelaziz, H.H., Ait Amar Meziane, M., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.
  2. Abualnour, M., Houari, M.S.A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2018), ''A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates'', Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
  3. Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19, 369-384. https://doi.org/10.12989/scs.2015.19.2.369.
  4. Ait Sidhoum, I., Boutchicha, D., Benyoucef, S. and Tounsi, A. (2018), "A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates", Smart Struct. Syst., 22(3), 303-314. https://doi.org/10.12989/sss.2018.22.3.303.
  5. Ait Sidhoum, I., Boutchicha, D., Benyoucef, S. and Tounsi, A. (2017), "An original HSDT for free vibration analysis of functionally graded plates", Steel Compos. Struct., 25(6), 735-745. https://doi.org/10.12989/scs.2017.25.6.735.
  6. Akavci, S. and Tanrikulu, A. (2015), "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. Part B, Eng., 83, 203-215. https://doi.org/10.1016/j.compositesb.2015.08.043.
  7. Akbas, S.D. (2017), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207. https://doi.org/10.22055/JACM.2017.21540.1107.
  8. Akbas, S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
  9. Akhavan, H., Hashemi, S.H., Taher, H.R.D., Alibeigloo, A. and Vahabi, S. (2009), "Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis", Comput. Mater. Sci., 44, 951-961. https://doi.org/10.1016/j.commatsci.2008.07.001.
  10. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070.
  11. Aqida, S., Ghazali, M. and Hashim, J. (2004), "Effects of porosity on mechanical properties of metal matrix composite: an overview", J. Teknol, 40(1), 17-32. https://doi.org/10.11113/jt.v40.395.
  12. Arshid, E., Khorshidvand, A.R. and Khorsandijou, S.M. (2019), "The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT, FSDT and TSDT", Struct. Eng. Mech., 70(1), 97-112. https://doi.org/10.12989/sem.2019.70.1.097.
  13. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.
  14. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18, 187-212. https://doi.org/10.12989/scs.2015.18.1.187.
  15. Avcar, M. (2016), "Effects of material non-homogeneity and two parameter elastic foundation on fundamental frequency parameters of Timoshenko beams", Acta Physica Polonica A, 130(1), 375-378. https://doi.org/10.12693/APhysPolA.130.375.
  16. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  17. Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.
  18. Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289.
  19. Baferani, A.H., Saidi, A. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020.
  20. Bakhadda, B., Bachir Bouiadjra, M., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311.
  21. Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A., Bouremana, M. and Tounsi, A. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct. (Accepted)
  22. Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213.
  23. Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.
  24. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057.
  25. Beldjelili, Y., Tounsi, A. and Mahmoud, S.A. (2016), "Hygrothermo- mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18, 755-786. https://doi.org/10.12989/sss.2016.18.4.755.
  26. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063.
  27. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017a), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/scs.2017.25.3.257.
  28. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017b), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695.
  29. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazil. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0.
  30. Benadouda, M., Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2017), "An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities", Earthq. Struct., 13(3), 255-265. https://doi.org/10.12989/eas.2017.13.3.255.
  31. Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K and Tounsi, A. (2017), "A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation", Geomech. Eng., 12(1), 9-34. https://doi.org/10.12989/gae.2017.12.1.009.
  32. Benchohra, M., Driz, H., Bakora, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., 65(1), 19-31. https://doi.org/10.12989/sem.2018.65.1.019.
  33. Bendaho, B., Belabed, Z., Bourada, M., Benatta, M.A., Bourada, F. and Tounsi, A. (2019), "Assessment of new 2D and quasi-3D nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates", Adv. Nano Res., 7(4), 279-294. https://doi.org/10.12989/anr.2019.7.4.277.
  34. Benferhat, R., Daouadji, T.H., Mansour, M.S. and Hadji, L. (2016b), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler- Pasternak foundations", Earthq. Struct., 10(6), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429.
  35. Benferhat, R., Hassaine Daouadji, T., Hadji, L. and Said Mansour, M. (2016a), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123.
  36. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-Ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res. (Accepted)
  37. Bennai, R., Atmane, H.A. and Tounsi, A. (2015), ''A new higherorder shear and normal deformation theory for functionally graded sandwich beams'', Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
  38. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088.
  39. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279.
  40. Bensattalah, T., Zidour, M. and Daouadji, T.S. (2019), "A new nonlocal beam model for free vibration analysis of chiral singlewalled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31.
  41. Berghouti, H., AddaBedia, E.A. Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res. (Accepted)
  42. Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and AddaBedia, E.A. (2013), "A new higher order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15, 671-703. https://doi.org/10.1177/1099636213498888.
  43. Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/sss.2017.19.6.601.
  44. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147.
  45. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115.
  46. Bouanati, S., Benrahou, K.H., Ait Atmane, H., AitYahia, S., Bernard, F., Tounsi, A. and Adda Bedia, E.A. (2019), "Investigation of wave propagation in anisotropic plates via quasi 3D HSDT", Geomech. Eng., 18(1), 85-96. https://doi.org/10.12989/gae.2019.18.1.085.
  47. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085.
  48. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397.
  49. Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Mahmoud, S.R. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/sem.2018.66.1.061.
  50. Boukhari, A., AitAtmane, H., Houari, M.S.A., Tounsi, A., AddaBedia, E.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837.
  51. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  52. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  53. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227.
  54. Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287.
  55. Bourada, F., Amara, K., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates", Struct. Eng. Mech., 68(6), 661-675. https://doi.org/10.12989/sem.2018.68.6.661.
  56. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  57. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409.
  58. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313.
  59. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825.
  60. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst. (Accepted)
  61. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Tounsi, A. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.189.
  62. Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B, 42, 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.
  63. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  64. Cherif, R.H., Meradjah, M., Zidour, M., Tounsi, A., Belmahi, H. and Bensattalah, T. (2018), "Vibration analysis of nano beam using differential transform method including thermal effect", J. Nano Res., 54, 1-14. https://doi.org/10.4028/www.scientific.net/JNanoR.54.1
  65. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.
  66. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  67. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete. (Accepted)
  68. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671.
  69. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  70. Ebrahimi, F., Mahmoodi, F. and Barati, M.R. (2017), "Thermomechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory", Adv. Mater. Res., 6(3), 279-301. https://doi.org/10.12989/amr.2017.6.3.279.
  71. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2017), ''A simple analytical approach for thermal buckling of thick functionally graded sandwich plates'', Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
  72. Elmossouess, B., Kebdani, S., Bachir Bouiadjra, M. and Tounsi, A. (2017), "A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates", Struct. Eng. Mech., 62(4), 401-415. https://doi.org/10.12989/sem.2017.62.4.401.
  73. Eltaher, M.A., Fouda, N., El-Midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40, 141. https://doi.org/10.1007/s40430-018-1065-0.
  74. Fadoun, O.O. (2019), "Analysis of axisymmetric fractional vibration of an isotropic thin disc in finite deformation", Comput. Concrete, 23(5), 303-309. https://doi.org/10.12989/cac.2019.23.5.303.
  75. Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and Mahmoud, S.R. (2017), "A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates", Geomech. Eng., 13(3), 385-410. https://doi.org/10.12989/gae.2017.13.3.385.
  76. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  77. Farzam-Rad, S.A., Hassani, B. and Karamodin, A. (2017), "Isogeometric analysis of functionally graded plates using a new quasi-3D shear deformation theory based on physical neutral surface", Compos. Part B, Eng., 108, 174-189. https://doi.org/10.1016/j.compositesb.2016.09.029.
  78. Fourn, H., Ait Atmane, H., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109.
  79. Gupta, A. and Talha, M. (2017), "Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment", Int. J. Struct. Stab. Dyn., 18(1), 1850013. https://doi.org/10.1142/S021945541850013X.
  80. Gupta, A. and Talha, M. (2018), "Influence of porosity on the flexural and vibration response of gradient plate using nonpolynomial higher-order shear and normal deformation theory", Int. J. Mech. Mater. Des., 14(2), 277-296. https://doi.org/10.1007/s10999-017-9369-2.
  81. Hachemi, H., Kaci, A., Houari, M.S.A., Bourada, M., Tounsi, A. and Mahmoud, S. (2017), ''A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations'', Steel Compos. Struct., 25(6), 717-726. https://doi.org/10.12989/scs.2017.25.6.717.
  82. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235.
  83. Hebali, H., Bakora, A., Tounsi, A. and Kaci, A. (2016), "A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates", Steel Compos. Struct., 22(3), 473-495. https://doi.org/10.12989/scs.2016.22.3.473.
  84. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and AddaBedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665.
  85. Hellal, H., Bourada, M., Hebali, H., Bourada, F., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Dynamic and stability analysis of functionally graded material sandwich plates in hygro-thermal environment using a simple higher shear deformation theory", J. Sandw. Struct. Mater., 1099636219845841. https://doi.org/10.1177/1099636219845841.
  86. Houari, M.S.A., Tounsi, A. and Anwar Beg, O. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-111. https://doi.org/10.1016/j.ijmecsci.2013.09.004.
  87. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257.
  88. Hsu, M.H. (2010), "Vibration analysis of orthotropic rectangular plates on elastic foundations", Compos. Struct., 92, 844-852. https://doi.org/10.1016/j.compstruct.2009.09.015.
  89. https://doi.org/10.4028/www.scientific.net/JNanoR.54.1.
  90. Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
  91. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res. (Accepted)
  92. Jha, D., Kant, T. and Singh, R. (2013), "Free vibration response of functionally graded thick plates with shear and normal deformations effects", Compos. Struct., 96, 799-823. https://doi.org/10.1016/j.compstruct.2012.09.034.
  93. Jin, G., Su, Z., Shi, S., Ye, T. and Gao, S. (2014), "Threedimensional exact solution for the free vibration of arbitrarily thick functionally graded rectangular plates with general boundary conditions", Compos. Struct., 108, 565-577. https://doi.org/10.1016/j.compstruct.2013.09.051.
  94. Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Post-buckling analysis of sheardeformable composite beams using a novel simple twounknown beam theory", Struct. Eng. Mech., 65(5), 621-631. https://doi.org/10.12989/sem.2018.65.5.621.
  95. Kadari, B., Bessaim, A., Tounsi, A., Heireche, H., Bousahla, A.A. and Houari, M.S.A. (2018), "Buckling analysis of orthotropic nanoscale plates resting on elastic foundations", J. Nano Res., 55, 42-56. https://doi.org/10.4028/www.scientific.net/JNanoR.55.42.
  96. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal post buckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125.
  97. Karama, M., Harb, B.A., Mistou, S. and Caperaa, S. (1998), "Bending, buckling and free vibration of laminated composite with a transverse shear stress continuity model", Compos. Part B, 29, 223-234. https://doi.org/10.1016/S1359-8368(97)00024-3.
  98. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
  99. Karami, B., Janghorban, M. and Tounsi, A. (2018a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  100. Karami, B., Janghorban, M. and Tounsi, A. (2018d), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025.
  101. Karami, B., Janghorban, M. and Tounsi, A. (2018f), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
  102. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  103. Karami, B., Janghorban, M. and Tounsi, A. (2019c), "On exact wave propagation analysis of triclinic material using three dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487.
  104. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018e), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
  105. Karami, B., Shahsavari, D. and Janghorban, M. (2018b), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mat. Struct., 25(12), 1047-1057. https://doi.org/10.1080/15376494.2017.1323143.
  106. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019b), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with grapheme nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
  107. Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018c), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349.
  108. Khetir, H., Bachir Bouiadjra, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/sem.2017.64.4.391.
  109. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a fourvariable quasi 3D HSDT", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-019-00732-1.
  110. Klouche, F., Darcherif, L., Sekkal, M., Tounsi, A. and Mahmoud, S.R. (2017), "An original single variable shear deformation theory for buckling analysis of thick isotropic plates", Struct. Eng. Mech., 63(4), 439-446. https://doi.org/10.12989/sem.2017.63.4.439.
  111. Kneifati, M.C. (1985), "Analysis of plates on a Kerr foundation model", J. Eng. Mech., 111, 1325-1342. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:11(1325).
  112. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct.,150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
  113. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel. Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
  114. Li, J.F., Takagi, K., Ono, M., Pan, W., Watanabe, R., Almajid, A. and Taya, M. (2003), "Fabrication and evaluation of porous piezoelectric ceramics and porosity-graded piezoelectric actuators", J. Am. Ceram. Soc., 86, 1094-1098. https://doi.org/10.1111/j.1151-2916.2003.tb03430.x.
  115. Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-art", Trend. Civil Eng. Arch., 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
  116. Lu, C., Lim, C.W. and Chen, W. (2009), "Exact solutions for free vibrations of functionally graded thick plates on elastic foundations", Mech. Adv. Mater. Struct., 16, 576-584. https://doi.org/10.1080/15376490903138888.
  117. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045.
  118. Mantari, J., Granados, E., Hinostroza, M. and Soares, C.G. (2014), "Modelling advanced composite plates resting on elastic foundation by using a quasi-3D hybrid type HSDT", Compos. Struct., 118, 455-471. https://doi.org/10.1016/j.compstruct.2014.07.039.
  119. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  120. Meksi, R, Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, SR. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443.
  121. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S. (2017), ''A new and simple HSDT for thermal stability analysis of FG sandwich plates'', Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.
  122. Merdaci, S., Tounsi, A. and Bakora, A. (2016), "A novel four variable refined plate theory for laminated composite plates", Steel Compos. Struct., 22(4), 713-732. https://doi.org/10.12989/scs.2016.22.4.713.
  123. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852.
  124. Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2018), ''A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory'', Smart Struct. Syst., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397.
  125. Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369.
  126. Naebe, M. and Shirvanimoghaddam, K. (2016), "Functionally graded materials: a review of fabrication and properties", Appl. Mater. Today, 5, 223-245. https://doi.org/10.1016/j.apmt.2016.10.001.
  127. Pasternak, P. (1954), "On a new method of analysis of an elastic foundation by means of two foundation constants", Gosudarstvennoe Izdatelstvo Literaturipo Stroitelstvu i Arkhitekture, Moscow.
  128. Rad, A.B., Farzan-Rad, M.R. and Majd, K.M. (2017), "Static analysis of non-uniform heterogeneous circular plate with porous material resting on a gradient hybrid foundation involving friction force", Struct. Eng. Mech., 64(5), 591-610. https://doi.org/10.12989/sem.2017.64.5.591.
  129. Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376. https://doi.org/10.12989/cac.2019.23.5.361.
  130. Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017a), "A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate", Steel Compos. Struct., 25(4), 389-401. https://doi.org/10.12989/scs.2017.25.4.389.
  131. Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017b), "A new quasi-3D HSDT for buckling and vibration of FG plate", Struct. Eng. Mech., 64(6), 737-749. https://doi.org/10.12989/sem.2017.64.6.737.
  132. Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445.
  133. Shahadat, M.R.B., Alam, M.F., Mandal, M.N.A and Ali, M.M. (2018), "Thermal transportation behaviour prediction of defective graphene sheet at various temperature: A Molecular Dynamics Study", Am. J. Nanomater., 6(1), 34-40. https://doi.org/10.12691/ajn-6-1-4.
  134. Shahsavari, D. and Janghorban, M. (2017), "Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load", J. Brazil. Soc. Mech. Sci. Eng., 39(10), 3849-3861. https://doi.org/10.1007/s40430-017-0863-0.
  135. Shahsavari, D., Karami, B. and Mansouri, S. (2018a), "Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories", Eur. J. Mech. A, Solid., 67, 200-214. https://doi.org/10.1016/j.euromechsol.2017.09.004.
  136. Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018b), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
  137. Shimpi, R. and Patel, H. (2006a), "Free vibrations of plate using two variable refined plate theory", J. Sound Vib., 296, 979-999. https://doi.org/10.1016/j.jsv.2006.03.030.
  138. Shimpi, R. and Patel, H. (2006b), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solid. Struct., 43, 6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007.
  139. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
  140. Sofiyev, A.H. and Avcar, M. (2010), "The stability of cylindrical shells containing an FGM layer subjected to axial load on the Pasternak foundation", Eng., 2(4), 228. https://doi.org/10.4236/eng.2010.24033.
  141. Thai, H.T. and Choi, D.H. (2011), "A refined plate theory for functionally graded plates resting on elastic foundation", Compos. Sci. Technol., 71, 1850-1858. https://doi.org/10.1016/j.compscitech.2011.08.016.
  142. Thai, H.T. and Kim, S.E. (2012), "Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates", Int. J. Mech. Sci., 54, 269-276. https://doi.org/10.1016/j.ijmecsci.2011.11.007.
  143. Thai, H.T. and Kim, S.E. (2013), "A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates", Compos. Struct., 99, 172-180. https://doi.org/10.1016/j.compstruct.2012.11.030.
  144. Thai, H.T. and Kim, S.E. (2015), "A review of theories for the modeling and analysis of functionally graded plates and shells", Compos. Struct., 128, 70-86. https://doi.org/10.1016/j.compstruct.2015.03.010.
  145. Thai, H.T., Vo, T., Bui, T. and Nguyen, T.K. (2014), "A quasi-3D hyperbolic shear deformation theory for functionally graded plates", Acta Mech., 225, 951-964. https://doi.org/10.1007/s00707-013-0994-z.
  146. Tounsi, A., Ait Atmane, H., Khiloun, M., Sekkal, M., Taleb, O. and Bousahla, A.A. (2019), "On buckling behavior of thick advanced composite sandwich plates", Compos. Mater. Eng., 1(1), 1-19.
  147. Tounsi, A., Houari, M.S.A., Benyoucef, S. and AddaBedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Tech., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009.
  148. Wang, Y., Tham, L. and Cheung, Y. (2005), "Beams and plates on elastic foundations: a review", Prog. Struct. Eng. Mater., 7, 174-182. https://doi.org/10.1002/pse.202.
  149. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  150. Winkler, E. (1867), "Die lehre von der elastizität und festigkeit (The Theory of Elasticity and Stiffness)", H. Dominicus, Prague, Czechoslovakia.
  151. Yahia, S.A, Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. http://dx.doi.org/10.12989/sem.2015.53.6.1143.
  152. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
  153. Yeghnem, R., Guerroudj, H.Z., Amar, LHH., Meftah, S.A., Benyoucef, S., Tounsi, A. and Adda Bedia, E.A. (2017), "Numerical modeling of the aging effects of RC shear walls strengthened by CFRP plates: A comparison of results from different "code type" models", Comput. Concrete, 19(5), 579-588. https://doi.org/10.12989/cac.2017.19.5.579.
  154. Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21(1), 65-74. https://doi.org/10.12989/sss.2018.21.1.065.
  155. Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S. (2018), ''Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates'', Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519.
  156. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
  157. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  158. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693.
  159. Zhou, D., Cheung, Y., Au, F. and Lo, S. (2002), "Threedimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method", Int. J. Solid. Struct., 39, 6339-6353. https://doi.org/10.1016/S0020-7683(02)00460-2.
  160. Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68(1-3), 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2.
  161. Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., 64(2), 145-153. https://doi.org/10.12989/sem.2017.64.2.145.
  162. Zidi, M., Tounsi, A., Houari, M.S.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermomechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001.
  163. Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125.

Cited by

  1. Wave dispersion properties in imperfect sigmoid plates using various HSDTs vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.699
  2. Stability of Two Weakly Coupled Elastic Beams with Partially Local Damping vol.2020, 2019, https://doi.org/10.1155/2020/7169526
  3. Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection vol.9, pp.4, 2019, https://doi.org/10.12989/acc.2020.9.4.397
  4. Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection vol.25, pp.4, 2020, https://doi.org/10.12989/cac.2020.25.4.283
  5. Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2019, https://doi.org/10.12989/amr.2020.9.4.265
  6. Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
  7. New Finite Modeling of Free and Forced Vibration Responses of Piezoelectric FG Plates Resting on Elastic Foundations in Thermal Environments vol.2021, 2019, https://doi.org/10.1155/2021/6672370
  8. In-Line and Cross-Flow Coupling Vibration Response Characteristics of a Marine Viscoelastic Riser Subjected to Two-Phase Internal Flow vol.2021, 2019, https://doi.org/10.1155/2021/7866802
  9. On the Finite Element Model of Rotating Functionally Graded Graphene Beams Resting on Elastic Foundation vol.2021, 2021, https://doi.org/10.1155/2021/1586388
  10. Free Vibration Exploration of Rotating FGM Porosity Beams under Axial Load considering the Initial Geometrical Imperfection vol.2021, 2019, https://doi.org/10.1155/2021/5519946
  11. Free Vibration Investigations of Rotating FG Beams Resting on Elastic Foundation with Initial Geometrical Imperfection in Thermal Environments vol.2021, 2019, https://doi.org/10.1155/2021/5533920
  12. A Refined Model for Analysis of Beams on Two-Parameter Foundations by Iterative Method vol.2021, 2021, https://doi.org/10.1155/2021/5562212
  13. Thermal frequency analysis of FG sandwich structure under variable temperature loading vol.77, pp.1, 2019, https://doi.org/10.12989/sem.2021.77.1.057
  14. Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method vol.10, pp.1, 2019, https://doi.org/10.12989/anr.2021.10.1.025
  15. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2019, https://doi.org/10.12989/sem.2021.77.2.217
  16. Vibration behavior of bi-dimensional functionally graded beams vol.77, pp.5, 2019, https://doi.org/10.12989/sem.2021.77.5.587
  17. Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.281
  18. Exact third-order static and free vibration analyses of functionally graded porous curved beam vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.001
  19. Electromagnetic field and initial stress on a porothermoelastic medium vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.001
  20. Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157
  21. Surface wave scattering analysis in an initially stressed stratified media vol.38, pp.8, 2019, https://doi.org/10.1108/ec-03-2020-0133
  22. Compressive mechanical behavior and model of composite elastic-porous metal materials vol.8, pp.12, 2019, https://doi.org/10.1088/2053-1591/ac40b5