References
- Abdollahzadeh, G., Jahani, E. and Kashir, Z. (2016), "Predicting of compressive strength of recycled aggregate concrete by genetic programming", Comput. Concrete, 18(2), 155-164. http://dx.doi.org/10.12989/cac.2016.18.2.155.
- Acikgenc, M., Ulas, M. and Alyamac, K.E. (2015), "Using an artificial neural network to predict mix compositions of steel fiber-reinforced concrete", Arab. J. Sci. Eng., 40, 407-419. https://doi.org/10.1007/s13369-014-1549-x.
- Ackley, D.H., Hinton, G.E. and Sejnowski, T.J. (1985), "A learning algorithm for Boltzmann machines", Cognitive Sci., 9(1), 147-169. https://doi.org/10.1016/S0364-0213(85)80012-4.
- Adeli, H. (2001), "Neural networks in civil engineering: 1989- 2000", Comput. Aid. Civil Infrastr. Eng., 16, 126-142. https://doi.org/10.1111/0885-9507.00219.
- Adhikary, B.B. and Mutsuyoshi, H. (2006), "Prediction of shear strength of steel fiber RC beams using neural networks", Constr. Build. Mater., 20(9), 801-811. https://doi.org/10.1016/j.conbuildmat.2005.01.047.
- Akkurt, S., Tayfur, G. and Can, S. (2004), "Fuzzy logic model for the prediction of cement compressive strength", Cement Concrete Res., 34, 1429-1433. https://doi.org/10.1016/j.cemconres.2004.01.020.
- Alavi Nezhad Khalil Abad, S.V., Yilmaz, M., Jahed Armaghani, D. and Tugrul, A. (2018), "Prediction of the durability of limestone aggregates using computational techniques", Neur. Comput. Appl., 29(2), 423-433. https://doi.org/10.1007/s00521-016-2456-8.
- Alavi, A.H. and Amir Hossein Gandomi, A.H. (2012), "Energybased numerical models for assessment of soil liquefaction", Geosci. Frontiers, 3(4), 541-555. https://doi.org/10.1016/j.gsf.2011.12.008.
- Alexandridis, A. (2013), "Evolving RBF neural networks for adaptive soft-sensor design", Int. J. Neural Syst., 23, 1350029. https://doi.org/10.1142/S0129065713500299.
- Alkayem, N.F., Cao, M., Zhang, Y., Bayat, M. and Su, Z. (2018), "Structural damage detection using finite element model updating with evolutionary algorithms: a survey", Neur. Comput. Appl., 30(2), 389-411. https://doi.org/10.1007/s00521-017-3284-1.
- Altun, F., Kişi, O. and Aydin, K. (2008), "Predicting the compressive strength of steel fiber added lightweight concrete using neural network", Comput. Mater. Sci., 42(2), 259-265. https://doi.org/10.1016/j.commatsci.2007.07.011.
- Apostolopoulou, M., Armaghani, D.J., Bakolas, A., Douvika, M.G., Moropoulou, A. and Asteris, P.G. (2019), "Compressive strength of natural hydraulic lime mortars using soft computing techniques", Procedia Struct. Integ., 17, 914-923. https://doi.org/10.1016/j.prostr.2019.08.122.
- Apostolopoulou, M., Douvika, M.G., Kanellopoulos, I.N., Moropoulou, A. and Asteris, P.G. (2018), "Prediction of compressive strength of mortars using artificial neural networks", 1st International Conference TMM_CH, Transdisciplinary Multispectral Modelling and Cooperation for the Preservation of Cultural Heritage, Athens, Greece, October.
- Armaghani, D.J., Hatzigeorgiou, G.D., Karamani, Ch., Skentou, A., Zoumpoulaki, I. and Asteris, P.G. (2019), "Soft computingbased techniques for concrete beams shear strength", Procedia Struct. Integ., 17, 924-933. https://doi.org/10.1016/j.prostr.2019.08.123.
- Armaghani, D.J., Safari, V., Fahimifar, A., Mohd Amin, M.F., Monjezi, M. and Mohammadi, M.A. (2018), "Uniaxial compressive strength prediction through a new technique based on gene expression programming", Neur. Comput. Appl., 30(11), 3523-3532. https://doi.org/10.1007/s00521-017-2939-2.
- Asteris, P.G. and Kolovos, K.G. (2019), "Self-compacting concrete strength prediction using surrogate models", Neur. Comput. Appl., 31, 409-424. https://doi.org/10.1007/s00521-017-3007-7.
- Asteris, P.G. and Nikoo, M. (2019), "Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures", Neur. Comput. Appl., 31(9), 4837-4847. https://doi.org/10.1007/s00521-018-03965-1.
- Asteris, P.G. and Plevris, V. (2013), "Neural network approximation of the masonry failure under biaxial compressive stress", Proceedings of the 3rd South-East European Conference on Computational Mechanics (SEECCM III), an ECCOMAS and IACM Special Interest Conference, Kos Island, Greece, June.
- Asteris, P.G. and Plevris, V. (2017), "Anisotropic masonry failure criterion using artificial neural networks", Neur. Comput. Appl., 28(8), 2207-2229. https://doi.org/10.1007/s00521-016-2181-3.
- Asteris, P.G. Ashrafian, A. and Rezaie-Balf, M. (2019a), "Prediction of the compressive strength of self-compacting concrete using surrogate models", Comput. Concrete, 24(2), 137-150. https://doi.org/10.12989/cac.2019.24.2.137.
- Asteris, P.G., Argyropoulos, I., Cavaleri, L., Rodrigues, H., Varum, H., Thomas, J., Paulo, B. and Lourenco, P.B. (2018b), "Masonry compressive strength prediction using artificial neural networks", 1st International Conference TMM_CH, Transdisciplinary Multispectral Modelling and Cooperation for the Preservation of Cultural Heritage, Athens, Greece, October.
- Asteris, P.G., Kolovos, K.G., Douvika, M.G. and Roinos, K. (2016), "Prediction of self-compacting concrete strength using artificial neural networks", Eur. J. Environ. Civil Eng., 20, 102-122. https://doi.org/10.1080/19648189.2016.1246693.
- Asteris, P.G., Nozhati, S., Nikoo, M., Cavaleri, L. and Nikoo, M. (2019b), "Krill herd algorithm-based neural network in structural seismic reliability evaluation", Mech. Adv. Mater. Struct., 26(13), 1146-1153. https://doi.org/10.1080/15376494.2018.1430874.
- Asteris, P.G., Roussis, P.C. and Douvika, M.G. (2017), "Feedforward neural network prediction of the mechanical properties of sandcrete materials", Sensor., 17(6),1344. https://doi.org/10.3390/s17061344.
- Asteris, P.G., Tsaris, A.K., Cavaleri, L., Repapis, C.C., Papalou, A., Di Trapani, F. and Karypidis, D.F. (2016), "Prediction of the fundamental period of infilled RC frame structures using artificial neural networks", Comput. Intell. Neurosci., 2016, 5104907. https://doi.org/10.1155/2016/5104907.
- ASTM C 109/C 109M-02 (2002), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2- in. or [50-mm] cube specimens), Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, PA, USA.
- ASTM Standards (1983), ASTM Designation: C 109-80 Standard Test Method for Compressive Strength of Hydraulic Cement Mortars.
- Bartlett, P.L. (1998), "The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network", IEEE Tran. Inform. Theory, 44, 525-536. https://doi.org/10.1109/18.661502.
- Batis, G., Pantazopoulou, P., Tsivilis, S. and Badogiannis, E. (2005), "The effect of metakaolin on the corrosion behavior of cement mortars", Cement Concrete Compos., 27(1), 125-130. https://doi.org/10.1016/j.cemconcomp.2004.02.041.
- Baykasoglu, A., Dereli, T.U. and Tanis, S. (2004), "Prediction of cement strength using soft computing techniques", Cement Concrete Res., 34, 2083-2090. https://doi.org/10.1016/j.cemconres.2004.03.028.
- Belalia Douma, O., Boukhatem, B., Ghrici, M. and Tagnit-Hamou, A. (2017), "Prediction of properties of self-compacting concrete containing fly ash using artificial neural network", Neur. Comput. Appl., 28(Suppl1), 707-718. https://doi.org/10.1007/s00521-016-2368-7.
- Bilgehan, M. and Turgut, P. (2010), "The use of neural networks in concrete compressive strength estimation", Comput. Concrete, 7(3), 271-283. https://doi.org/10.12989/cac.2010.7.3.271.
- Boukhatem, B., Kenai, S., Hamou, A.T., Ziou, D. and Ghrici, M. (2012), "Predicting concrete properties using Neural Networks (NN) with Principal Component Analysis (PCA) technique", Comput. Concrete, 10(6), 557-573. https://doi.org/10.12989/cac.2012.10.6.557.
- Bui, D.T., Ghareh, S., Moayedi, H. and Nguyen, H. (2019), "Finetuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-019-00850-w.
- Camoes, A. and Martins, F.F. (2017), "Compressive strength prediction of CFRP confined concrete using data mining techniques", Comput. Concrete, 19(3), 233-241. https://doi.org/10.12989/cac.2017.19.3.233.
- Cao, M., Alkayem, N.F., Pan, L. and Novak D. (2016), "Advanced methods in neural networks-based sensitivity analysis with their applications in civil engineering, artificial neural networks - Models and applications", Ed. Joao Luis Garcia Rosa, InTech, https://doi.org/10.5772/64026.
- Castelli, M., Goncalves, I., Popovic, A. and Trujillo, L. (2017), "An evolutionary system for the prediction of high performance concrete strength based on semantic genetic programming", Comput. Concrete, 19(6), 651-658. https://doi.org/10.12989/cac.2017.19.6.651.
- Cavaleri, L., Asteris, P.G., Psyllaki, P.P., Douvika, M.G., Skentou, A.D. and Vaxevanidis, N.M. (2019), "Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks", Appl. Sci., 9(14), 2788. https://doi.org/10.3390/app9142788.
- Cavaleri, L., Chatzarakis, G.E., Di Trapani, F.D., Douvika, M.G., Roinos, K., Vaxevanidis, N.M. and Asteris, P.G. (2017), "Modeling of surface roughness in electro-discharge machining using artificial neural networks", Adv. Mater. Res., 6(2), 169-184. https://doi.org/10.12989/amr.2017.6.2.169.
- Chen, H., Asteris, P.G., Armaghani, D.J., Gordan, B. and Pham, B.T. (2019), "Assessing dynamic conditions of the retaining wall: Developing two hybrid intelligent models", Appl. Sci., 9(6), 1042. https://doi.org/10.3390/app9061042.
- Cheng, B. and Titterington, D.M. (1994), "Neural networks: A review from a statistical perspective", Statist. Sci., 9(1), 2-30. https://doi.org/10.1214/ss/1177010638
- Courard, L., Darimont, A., Schouterden, M., Ferauche, F., Willem, X. and Degeimbre, R. (2003), "Durability of mortars modified with metakaolin", Cement Concrete Res., 33(9), 1473-1479. https://doi.org/10.1016/S0008-8846(03)00090-5.
- Dao, D.V., Ly, H.B., Trinh, S.H., Le, T.T. and Pham, B.T. (2019), "Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete", Mater., 12, 983. https://doi.org/10.3390/ma12060983.
- Dao, V.D., Trinh, S.H., Ly, H.B. and Pham, B.T. (2019), "Prediction of compressive strength of geopolymer concrete using entirely steel slag aggregates: Novel hybrid artificial intelligence approaches", Appl. Sci., 9(6), 1113. https://doi.org/10.3390/app9061113.
- Delen, D., Sharda, R. and Bessonov, M. (2006), "Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks", Accid. Anal. Prev., 38, 434-444. https://doi.org/10.1016/j.aap.2005.06.024.
- Demir, F. (2008), "Prediction of elastic modulus of normal and high strength concrete by artificial neural networks", Constr. Build. Mater., 22(7), 1428-1435. https://doi.org/10.1016/j.conbuildmat.2007.04.004.
- Dias, W.P.S. and Pooliyadda, S.P. (2001), "Neural networks for predicting properties of concretes with admixtures", Constr. Build. Mater., 15, 371-379. https://doi.org/10.1016/S0950-0618(01)00006-X.
- Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463.
- EN 196-1 (1994), Methods of Testing Cement-Part 1: Determination of Strength.
- EN 197-1 (2011), Cement. Composition, Specifications and Conformity Criteria for Common Cements
- Erdal, H., Erdal, M., Şimşek, O. and Erdal, H.İ. (2018), "Prediction of concrete compressive strength using nondestructive test results", Comput. Concrete, 21(4), 407-417. https://doi.org/10.12989/cac.2018.21.4.407.
- Eskandari-Naddaf, H. and Kazemi, R. (2017), "ANN prediction of cement mortar compressive strength, influence of cement strength class", Constr. Build. Mater., 138, 1-11. https://doi.org/10.1016/j.conbuildmat.2017.01.132.
- Fukushima, K. (1998), "Neocognitron: A hierarchical neural network capable of visual pattern recognition", Neur. Network., 1(2), 119-130. https://doi.org/10.1016/0893-6080(88)90014-7.
- Gazder, U., Al-Amoudi, O.S.B., Saad Khan, S.M. and Maslehuddin, M. (2017), "Predicting compressive strength of blended cement concrete with ANNs", Comput. Concrete, 20(6), 627-634. https://doi.org/10.12989/cac.2017.20.6.627.
- Giovanis, D.G. and Papadopoulos, V. (2015), "Spectral representation-based neural network assisted stochastic structural mechanics", Eng. Struct., 84, 382-394. https://doi.org/10.1016/j.engstruct.2014.11.044.
- Golafshani, E.M. and Pazouki, G. (2018), "Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method", Comput. Concrete, 22(4), 419-437. https://doi.org/10.12989/cac.2018.22.4.419.
- Hinton, G.E. and Salakhutdinov, R.R. (2006), "Reducing the dimensionality of data with neural networks", Sci., 313, 504-507. https://doi.org/10.1126/science.1127647.
- Hinton, G.E., Osindero, S. and The, Y.W. (2006), "A fast learning algorithm for deep belief nets", Neur. Comput., 18(7), 1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527.
- Hoang, N.D. and Bui, D.T. (2018), "Predicting earthquakeinduced soil liquefaction based on a hybridization of kernel Fisher discriminant analysis and a least squares support vector machine: a multi-dataset study", Bull. Eng. Geol. Environ., 77(1), 191-204. https://doi.org/10.1007/s10064-016-0924-0.
- Hola, A. and Sadowski, L. (2019), "A method of the neural identification of the moisture content in brick walls of historic buildings on the basis of non-destructive tests", Autom. Constr., 106, 102850. https://doi.org/10.1016/j.autcon.2019.102850.
- Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neur. Network., 2, 359-366. https://doi.org/10.1016/0893-6080(89)90020-8.
- Ince, R. (2004), "Prediction of fracture parameters of concrete by artificial neural networks", Eng. Fract. Mech., 71(15), 2143-2159. https://doi.org/10.1016/j.engfracmech.2003.12.004.
- Iruansi, O., Guadagnini, M., Pilakoutas, K. and Neocleous, K. (2010), "Predicting the shear strength of RC beams without stirrups using Bayesian neural network", Proceedings of the 4th International Workshop on Reliable Engineering Computing, Robust Design-Coping with Hazards, Risk and Uncertainty, Singapore, March.
- Kadri, E. H., Kenai, S., Ezziane, K., Siddique, R. and De Schutter, G. (2011), "Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar", Appl. Clay Sci., 53(4), 704-708. https://doi.org/10.1016/j.clay.2011.06.008.
- Kao, C.H., Wang, C.C. and Wang, H.Y. (2017), "A neural-based predictive model of the compressive strength of waste LCD glass concrete", Comput. Concrete, 19(5), 457-465. https://doi.org/10.12989/cac.2017.19.5.457.
- Karlik, B. and Olgac, A.V. (2011), "Performance analysis of various activation functions in generalized MLP architectures of neural networks", Int. J. Artif. Intell. Exp Syst., 1, 111-122.
- Kaveh, A., Bakhshpoori, T. and Hamze-Ziabari, S.M. (2018), "GMDH-based prediction of shear strength of FRP-RC beams with and without stirrups", Comput. Concrete, 22(2), 197-207. https://doi.org/10.12989/cac.2018.22.2.197.
- Kewalramani, M.A. and Gupta, R. (2006), "Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks", Autom. Constr., 15(3), 374-379. https://doi.org/10.1016/j.autcon.2005.07.003.
- Khademi, F., Akbari, M., Jamal, S.M. and Nikoo, M. (2017), "Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete", Front. Struct. Civil Eng., 11, 90-99. https://doi.org/10.1007/s11709-016-0363-9.
- Le, L.M., Ly, H.B., Pham, B.T., Le, V.M., Pham, T.A., Nguyen, D.H., Tran, X.T. and Le, T.T. (2019), "Hybrid artificial intelligence approaches for predicting buckling damage of steel columns under axial compression", Mater., 12(10), 1670. https://doi.org/10.3390/ma12101670.
- LeCun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539.
- LeCun, Y., Botoo, L., Bengio, Y. and Haffner, P. (1998), "Gradient-based learning applied to document recognition", Proc. IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
- Lee, S.C. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25, 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X.
- Lourakis, M.I.A. (2005), "A brief description of the Levenberg- Marquardt algorithm implemented by levmar", Hellas (FORTH), Institute of Computer Science Foundation for Research and Technology, http://www.ics.forth.gr/-lourakis/levmar/levmar.
- Ly, H-B., Pham, B.T., Dao, D.V., Le, V.M., Le, L.M. and Le, TT. (2019), "Improvement of ANFIS model for prediction of compressive strength of manufactured sand concrete", Appl. Sci., 9(18), 3841. https://doi.org/10.3390/app9183841.
- Ly, H.B., Le, L.M., Duong, H.T., Nguyen, T.C., Pham, T.A., Le, T.T., Le, V.M., Nguyen-Ngoc, L. and Pham, B.T. (2019), "Hybrid artificial intelligence approaches for predicting critical buckling load of structural members under compression considering the influence of initial geometric imperfections", Appl. Sci., 9(11), 2258. https://doi.org/10.3390/app9112258.
- Mansouri, I. and Kisi, O. (2015), "Prediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approaches", Compos. Part B Eng., 70, 247-255. https://doi.org/10.1016/j.compositesb.2014.11.023.
- Mansouri, I., Gholampour, A., Kisi, O. and Ozbakkaloglu, T. (2016), "Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques", Neur. Comput. Appl., 1-16. https://doi.org/10.1007/s00521-016-2492-4.
- Mardani-Aghabaglou, A., Sezer, G.İ. and Ramyar, K. (2014), "Comparison of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view point", Constr. Build. Mater., 70, 17-25. https://doi.org/10.1016/j.conbuildmat.2014.07.089.
- Mashhadban, H., Kutanaei, S.S. and Sayarinejad, M.A. (2016), "Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network", Constr. Build. Mater., 119, 277-287. https://doi.org/10.1016/j.conbuildmat.2016.05.034.
- Mazloom, M. and Yoosefi, M.M. (2013), "Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks", Comput. Concrete, 12(3), 285-301. https://doi.org/10.12989/cac.2013.12.3.285.
- McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bull. Math. Biophys, 5(4), 115-133. https://doi.org/10.1007/BF02478259.
- Minsky, M. and Papert, S. (1969), Perceptrons: An Introduction to Computational Geometry, The MIT Press, Cambridge, MA, ISBN 0-262-63022-2.
- Moayedi, H., Foong, L.K., Nguyen, H., Bui, D.T., Jusoh, W.A.W. and Rashid, A.S.A. (2019), "Optimizing ANN models with PSO for predicting in short building seismic response", Eng. Comput., 36, 1-16. https://doi.org/10.1007/s00366-019-00733-0.
- Moayedi, H., Moatamediyan, A., Nguyen, H., Bui, XN., Bui, D.T. and Rashid, A.S.A. (2019), "Prediction of ultimate bearing capacity through various novel evolutionary and neural network models", Eng. Comput., 36, 1-17. https://doi.org/10.1007/s00366-019-00723-2.
- Naderpour, H. and Mirrashid, M. (2018), "An innovative approach for compressive strength estimation of mortars having calcium inosilicate minerals", J. Build. Eng., 19, 205-215. https://doi.org/10.1016/j.jobe.2018.05.012.
- NBN B12-208 (1969), Ciments, Essais de flexion et compression, Belgian Institute for Standardization, Brussels.
- Nguyen, M.D., Pham, B.T., Tuyen, T.T., Yen, H.P.H., Prakash, I., Vu, T.T., Chapi, K., Shirzadi, A., Shahabi, H., Dou, J., Quoc, N.K. and Bui, D.T. (2019), "Development of an artificial intelligence approach for prediction of consolidation coefficient of soft soil: A sensitivity analysis", Open Constr. Build. Technol. J., 13(1).
- Nikoo, M., Hadzima-Nyarko, M., KarloNyarko, E. and Nikoo, M. (2018), "Determining the natural frequency of cantilever beams using ANN and heuristic search", Appl. Artif. Intell., 32(3), 309-334. https://doi.org/10.1080/08839514.2018.1448003.
- Nikoo, M., Ramezani, F., Hadzima-Nyarko, M., Nyarko, E.K. and Nikoo, M. (2016) "Flood-routing modeling with neural network optimized by social-based algorithm", Nat. Hazard., 82(1), 1-24. https://doi.org/10.1007/s11069-016-2176-5.
- Nikoo, M., Sadowski, L., Khademi, F. and Nikoo, M. (2017), "Determination of damage in reinforced concrete frames with shear walls using self-organizing feature map", Appl. Comput. Intel. Soft Comput., 2017, Article ID 3508189, 10. https://doi.org/10.1155/2017/3508189.
- Nikoo, M., Zarfam, P. and Sayahpour, H. (2015), "Determination of compressive strength of concrete using Self Organization Feature Map (SOFM)", Eng. Comput., 31, 113-121. https://doi.org/10.1007/s00366-013-0334-x.
- Oh, T.K., Kim, J., Lee, C. and Park, S. (2017), "Nondestructive concrete strength estimation based on electro-mechanical impedance with artificial neural network", J. Adv. Concr. Technol., 15, 94-102. https://doi.org/10.3151/jact.15.94.
- Ongpeng, J., Soberano, M., Oreta, A. and Hirose, S. (2017), "Artificial neural network model using ultrasonic test results to predict compressive stress in concrete", Comput. Concrete, 19(1), 59-68. https://doi.org/10.12989/cac.2017.19.1.059.
- Onyari, E.K. and Ikotun, B.D. (2018), "Prediction of compressive and flexural strengths of a modified zeolite additive mortar using artificial neural network", Constr. Build. Mater., 187, 1232-1241. https://doi.org/10.1016/j.conbuildmat.2018.08.079.
- O zcan, F., Atis, C.D., Karahan, O., Uncuoglu, E. and Tanyildizi, H. (2009), "Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete", Adv. Eng. Softw., 40, 856-863. https://doi.org/10.1016/j.advengsoft.2009.01.005.
- Pala, M., O zbay, E., O ztas, A. and Yuce, M.I. (2007), "Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks", Constr. Build. Mater., 21(2), 384-394. https://doi.org/10.1016/j.conbuildmat.2005.08.009.
- Parande, A.K., Ramesh Babu, B., AswinKarthik, M., Deepak Kumaar, K.K. and Palaniswamy, N. (2008), "Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar", Constr. Build. Mater., 22(3), 127-134. https://doi.org/10.1016/j.conbuildmat.2006.10.003.
- Peng, C.H., Yeh, I.C. and Lien, L.C. (2009), "Modeling strength of high-performance concrete using genetic operation trees with pruning techniques", Comput. Concrete, 6(3), 203-223. https://doi.org/10.12989/cac.2009.6.3.203.
- Pham, B.T., Tien Bui, D. and Prakash, I. (2017), "Landslide susceptibility assessment using bagging ensemble based alternating decision trees, logistic regression and J48 decision trees methods: A comparative study", Geotech. Geolog. Eng., 35(6), 2597-2611. https://doi.org/10.1007/s10706-017-0264-2.
- Plevris, V. and Asteris, P. (2015), "Anisotropic failure criterion for brittle materials using artificial beural betworks", Proceedings of the COMPDYN 2015-5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete Island, Greece, May.
- Plevris, V. and Asteris, P.G. (2014), "Modeling of masonry failure surface under biaxial compressive stress using neural networks", Constr. Build. Mater., 55, 447-461. https://doi.org/10.1016/j.conbuildmat.2014.01.041.
- Potgieter-Vermaak, S.S. and Potgieter, J.H. (2006), "Metakaolin as an extender in South African cement", J. Mater. Civil Eng., 18(4), 619-623. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(619).
- Rashid, K. and Rashid, T. (2017), "Fuzzy logic model for the prediction of concrete compressive strength by incorporating green foundry sand", Comput. Concrete, 19(6), 617-623. https://doi.org/10.12989/cac.2017.19.6.617.
- Reddy, T.C.S. (2017), "Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network", Front. Struct. Civil Eng., 1-14. https://doi.org/10.1007/s11709-017-0445-3.
- Ripley, B.D. (1996), Pattern Recognition and Neural Networks, 1st Edition, Cambridge University Press, Cambridge, United Kingdom.
- Rosenblatt, F. (1958), "The perceptron: A probabilistic model for information storage and organization in the brain", Psycholog. Rev., 65(6), 386-408. http://dx.doi.org/10.1037/h0042519.
- Sadowski, L., Nikoo, M. and Nikoo, M. (2015), "Principal component analysis combined with a self organization feature map to determine the pull-off adhesion between concrete layers", Constr. Build. Mater., 78, 386-396. https://doi.org/10.1016/j.conbuildmat.2015.01.034.
- Sadowski, L., Nikoo, M. and Nikoo, M. (2018), "Concrete compressive strength prediction using the imperialist competitive algorithm", Comput. Concrete, 22(4), 355-363. https://doi.org/10.12989/cac.2018.22.4.355.
- Safiuddin, M., Raman, S.N., Salam, M.A. and Jumaat, M.Z. (2016), "Modeling of compressive strength for selfconsolidating high-strength concrete incorporating palm oil fuel ash", Mater., 9, 396. https://doi.org/10.3390/ma9050396.
- Saha, P., Prasad, M.L.V. and RathishKumar, P. (2017), "Predicting strength of SCC using artificial neural network and multivariable regression analysis", Comput. Concrete, 20(1), 31-38. https://doi.org/10.12989/cac.2017.20.1.031.
- Salehi, H. and Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. https://doi.org/10.1016/j.engstruct.2018.05.084.
- Saridemir, M. (2009), "Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic", Adv. Eng. Softw., 40(9), 920-927. https://doi.org/10.1016/j.advengsoft.2008.12.008.
- Sarir, P., Chen, J., Asteris, P.G., Armaghani, D.J. and Tahir, M.M. (2019), "Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-019-00808-y.
- Schmidhuber, J. (2015), "Deep learning in neural networks: An overview", Neur. Network., 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003.
- Sumasree, C. and Sajja, S. (2016), "Effect of metakaolin and cerafibermix on mechanical and durability properties of mortars", Int. J. Sci. Eng. Technol., 4(3), 501-506.
- Topçu, I.B. and Saridemir, M. (2007), "Prediction of properties of waste AAC aggregate concrete using artificial neural network", Comput. Mater. Sci., 41(1), 117-125. https://doi.org/10.1016/j.commatsci.2007.03.010.
- Topçu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41, 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009.
- Trtnik, G., Kavcic, F. and Turk, G. (2009), "Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks", Ultrasonics, 49, 53-60. https://doi.org/10.1016/j.ultras.2008.05.001.
- Tsai, H.C. and Liao, M.C. (2019), "Knowledge-based learning for modeling concrete compressive strength using genetic programming", Comput. Concrete, 23(4), 255-265. https://doi.org/10.12989/cac.2019.23.4.255.
- Turkmen, I., Bingol, A.F., Tortum, A., Demirboga, R. and Gul, R. (2017), "Properties of pumice aggregate concretes at elevated temperatures and comparison with ANN models", Fire Mater., 41, 142-153. https://doi.org/10.1002/fam.2374.
- Vu, D.D., Stroeven, P. and Bui, V.B. (2001), "Strength and durability aspects of calcined kaolin-blended Portland cement mortar and concrete", Cement Concrete Compos., 23(6), 471-478. https://doi.org/10.1016/S0958-9465(00)00091-3.
- Waszczyszyn, Z. and Ziemiański, L. (2001), "Neural networks in mechanics of structures and materials-New results and prospects of applications", Comput. Struct., 79, 2261-2276. https://doi.org/10.1016/S0045-7949(01)00083-9.
- Widrow, B. and Lehr, M.A. (1990), "30 years of adaptive neural networks: Perceptron, madaline, and backpropagation", Proc. IEEE, 78(9), 1415-1442. https://doi.org/10.1109/5.58323
- Xu, H., Zhou, J., Asteris, P.G., Armaghani, D.J. and Tahir, M.Md. (2019), "Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate", Appl. Sci., 9, 3715. https://doi.org/10.3390/app9183715.
- Xue, X. (2018), "Evaluation of concrete compressive strength based on an improved PSO-LSSVM model", Comput. Concrete, 21(5), 505-511. https://doi.org/10.12989/cac.2018.21.5.505.
- Zhang, G., Patuwo, B.E. and Hu, M.Y. (1998), "Forecasting with artificial neural networks: The state of the art", Int. J. Forecast., 14(1), 35-62. https://doi.org/10.1016/S0169-2070(97)00044-7.
Cited by
- Prediction of Vibration Velocity Generated in Mine Blasting Using Support Vector Regression Improved by Optimization Algorithms vol.29, pp.2, 2020, https://doi.org/10.1007/s11053-019-09597-z
- Soil Unconfined Compressive Strength Prediction Using Random Forest (RF) Machine Learning Model vol.14, pp.1, 2019, https://doi.org/10.2174/1874836802014010278
- A neuro-fuzzy approach to predict the shear contribution of end-anchored FRP U-jackets vol.26, pp.5, 2019, https://doi.org/10.12989/cac.2020.26.5.397
- Estimating the compressive strength of HPFRC containing metallic fibers using statistical methods and ANNs vol.10, pp.6, 2019, https://doi.org/10.12989/acc.2020.10.6.479
- Artificial intelligence for the compressive strength prediction of novel ductile geopolymer composites vol.28, pp.1, 2019, https://doi.org/10.12989/cac.2021.28.1.055
- Application of Artificial Neural Networks for Prediction of Mechanical Properties of CNT/CNF Reinforced Concrete vol.14, pp.19, 2021, https://doi.org/10.3390/ma14195637