DOI QR코드

DOI QR Code

Experimental and numerical simulation study on fracture properties of self-compacting rubberized concrete slabs

  • Wang, Jiajia (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University) ;
  • Chen, Xudong (College of Civil and Transportation Engineering, Hohai University) ;
  • Bu, Jingwu (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University) ;
  • Guo, Shengshan (China Institute of Water Resources and Hydropower Research)
  • Received : 2019.02.26
  • Accepted : 2019.08.06
  • Published : 2019.10.25

Abstract

The limited availability of raw materials and increasing service demands for pavements pose a unique challenge in terms of pavement design and concrete material selection. The self-compacting rubberized concrete (SCRC) can be used in pavement design. The SCRC pavement slab has advantages of excellent toughness, anti-fatigue and convenient construction. On the premise of satisfying the strength, the SCRC can increase the ductility of pavement slab. The aim of this investigation is proposing a new method to predict the crack growth and flexural capacity of large-scale SCRC slabs. The mechanical properties of SCRC are obtained from experiments on small-scale SCRC specimens. With the increasing of the specimen depth, the bearing capacity of SCRC beams decreases at the same initial crack-depth ratio. By constructing extended finite element method (XFEM) models, crack growth and flexural capacity of large-scale SCRC slabs with different fracture types and force conditions can be predicted. Considering the diversity of fracture types and force conditions of the concrete pavement slab, the corresponding test was used to verify the reliability of the prediction model. The crack growth and flexural capacity of SCRC slabs can be obtained from XFEM models. It is convenient to conduct the experiment and can save cost.

Keywords

References

  1. Belytschko, T., Gracie, R. and Ventura, G. (2009), "TOPICAL REVIEW: A review of extended/generalized finite element methods for material modeling", Model. Simul. Mater. SC., 17(4).
  2. Bu, J.W., Chen, X.D., Liu, S.S., Li, S.T. and Shen, N. (2018), "Experimental study on the dynamic behavior of pervious concrete for permeable pavement", Comput. Concrete, 22(3), 291-303. https://doi.org/10.12989/cac.2018.22.3.291.
  3. Chen, X., Bu, J., Fan, X., Lu, J. and Xu, L. (2017), "Effect of loading frequency and stress level on low cycle fatigue behavior of ordinary concrete in direct tension", Constr. Build. Mater., 133, 367-375. https://doi.org/10.1016/j.conbuildmat.2016.12.085.
  4. Chen, X., Wu, S. and Zhou, J. (2013), "Experimental study and analytical formulation of mechanical behavior of concrete", Constr. Build. Mater., 47(10), 662-670. https://doi.org/10.1016/j.conbuildmat.2013.05.041.
  5. Chen, X., Wu, S. and Zhou, J. (2014), "Strength values of cementitious materials in bending and tension test methods", J. Mater. Civil Eng., 26(3), 484-490. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000846.
  6. Dong, W., Zhang, X., Zhang, B. and Wu, Q. (2018), "Influence of sustained loading on fracture properties of concrete", Eng. Fract. Mech., 200, 134-145. https://doi.org/10.1016/j.engfracmech.2018.07.034.
  7. Fakhri, M. and Amoosoltani, E. (2017), "Crack behavior analysis of roller compacted concrete mixtures containing reclaimed asphalt pavement and crumb rubber", Eng. Fract. Mech., 180, 43-59. https://doi.org/10.1016/j.engfracmech.2017.05.011.
  8. Gaedicke, C., Roesler, J. and Evangelista Jr, F. (2012), "Threedimensional cohesive crack model prediction of the flexural capacity of concrete slabs on soil", Eng. Fract. Mech., 94, 1-12. https://doi.org/10.1016/j.engfracmech.2012.04.029.
  9. Gao, H. (2007), "Influence factors analysis of broken slab on cement concrete pavement", Forest Eng., 4.
  10. Gencel, O., Ozel, C., Brostow, W. and MartA-nez-Barrera, G. (2015), "Mechanical properties of self-compacting concrete reinforced with polypropylene fibres", Mater. Res. Innov., 15(3), 216-225. https://doi.org/10.1179/143307511X13018917925900.
  11. Guan, J., Hu, X. and Li, Q. (2016), "In-depth analysis of notched 3-p-b concrete fracture", Eng. Fract. Mech., 165, 57-71. https://doi.org/10.1016/j.engfracmech.2016.08.020.
  12. Guiamatsia, I., Falzon, B.G., Davies, G.A.O. and Iannucci, L. (2009), "Element-free Galerkin modelling of composite damage", Compos. Sci. Technol., 69(15-16), 2640-2648. https://doi.org/10.1016/j.compscitech.2009.08.005.
  13. Hesami, S., Hikouei, I.S. and Emadi, S.A.A. (2016), "Mechanical behavior of self-compacting concrete pavements incorporating recycled tire rubber crumb and reinforced with polypropylene fiber", J. Clean. Prod., 133, 228-234. ps://doi.org/10.1016/j.jclepro.2016.04.079.
  14. Hillerborg, A. (1985), "The theoretical basis of a method to determine the fracture energy GF of concrete", Mater. Struct., 18(4), 291-296. https://doi.org/10.1007/BF02472919.
  15. Hou, Y., Yue, P., Xin, Q., Pauli, T. and Sun, W. (2014), "Fracture failure of asphalt binder in mixed mode (Modes I and II) by using phase-field model", Road Mater. Pavement, 15(1), 167-181. https://doi.org/10.1080/14680629.2013.866155.
  16. Ioannides, A.M. and Peng, J. (2004), "Finite element simulation of crack growth in concrete slabs: Implications for pavement design", Proceedings of the Fifth International Workshop on Fundamental Modeling of Concrete Pavements, Istanbul, Turkey, April.
  17. Khaloo, A.R., Dehestani, M. and Rahmatabadi, P. (2008), "Mechanical properties of concrete containing a high volume of tire-rubber particles", Waste Manage., 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015.
  18. Kim, H.B. and Lee, S.H. (2002), "Reliability-based design model applied to mechanistic empirical pavement design", KSCE J. Civil Eng., 6(3), 263-272. https://doi.org/10.1007/BF02829149.
  19. Kumar, S., Singh, I.V. and Mishra, B.K. (2014), "XFEM simulation of stable crack growth using J-R, curve under finite strain plasticity", Int. J. Meth. Mater. Des., 10(2), 165-177. https://doi.org/10.1007/s10999-014-9238-1.
  20. Long, G., Gao, Y. and Xie, Y. (2015), "Designing more sustainable and greener self-compacting concrete", Constr. Build. Mater., 84, 301-306. https://doi.org/10.1016/j.conbuildmat.2015.02.072.
  21. Merhej, T. and Feng, D.C. (2011), "Parameter sensitivity analysis of airport rigid pavement thickness using FAARFIELD program", Adv. Mater., 243-249, 4068-4074. https://doi.org/10.4028/www.scientific.net/AMR.243-249.4068.
  22. Modarres, A. and Shabani, H. (2015), "Investigating the effect of aircraft impact loading on the longitudinal top-down crack propagation parameters in asphalt runway pavement using fracture mechanics", Eng. Fract. Mech., 150, 28-46. https://doi.org/10.1016/j.engfracmech.2015.10.024.
  23. Najim, K.B. (2012), "Mechanical and dynamic properties of selfcompacting crumb rubber modified concrete", Constr. Build. Mater., 27(1), 521-530. https://doi.org/10.1016/j.conbuildmat.2011.07.013.
  24. Ooi, E.T. and Yang, Z.J. (2010), "A hybrid finite element-scaled boundary finite element method for crack propagation modelling", Comput. Method. Appl. M., 199(17-20), 1178-1192. https://doi.org/10.1016/j.cma.2009.12.005.
  25. Qing, L., Shi, X., Mu, R. and Cheng, Y. (2018), "Determining tensile strength of concrete based on experimental loads in fracture test", Eng. Fract. Mech., 202, 87-102. https://doi.org/10.1016/j.engfracmech.2018.09.017.
  26. Sallier, L. and Forquin, P. (2012), "On the use of Hillerborg regularization method to model the softening behaviour of concrete subjected to dynamic tensile loading", E. EPJ-Spec. Topic., 206(1), 97-105. https://doi.org/10.1140/epjst/e2012-01591-5.
  27. Shah, S.P. (1990), "Determination of fracture parameters (KICS and CTODC) of ordinary concrete using three-point bend tests", Mater. Struct., 23(6), 457-460. https://doi.org/10.1007/BF02472029.
  28. Singh, I.V., Mishra, B.K., Bhattacharya, S. and Patil, R.U. (2012), "The numerical simulation of fatigue crack growth using extended finite element method", Int. J. Fatig., 36(1), 109-119. https://doi.org/10.1016/j.ijfatigue.2011.08.010.
  29. Skarzynski, L., Nitka, M. and Tejchman, J. (2015), "Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray ${\mu}CT$ images of internal structure", Eng. Fract. Mech., 147, 13-35. https://doi.org/10.1016/j.engfracmech.2015.08.010.
  30. Sukontasukkul, P. and Chaikaew, C. (2006), "Properties of concrete pedestrian block mixed with crumb rubber", Constr. Build. Mater., 20(7), 450-457. https://doi.org/10.1016/j.conbuildmat.2005.01.040.
  31. Reda Taha, M.M., El-Dieb, A.S., Abd El-Wahab, M.A. and Abdel-Hameed, M.E. (2008), "Mechanical, fracture, and microstructural investigations of rubber concrete", J. Mater. Civil Eng., 20(10), 640-649. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:10(640).
  32. Tao, M. (2017), "Application of waste rubber asphalt mixture in the pavement maintenance", Transport. Sci..
  33. Trivedi, N. and Singh, R.K. (2015), "Chattopadhyay, Investigation on fracture parameters of concrete through optical crack profile and size effect studies", Eng. Fract. Mech., 147, 119-139. https://doi.org/10.1016/j.engfracmech.2015.08.027.
  34. Turgut, P. and Yesilata, B. (2008), "Physico-mechanical and thermal performances of newly developed rubber-added bricks", Energy Build., 40(5), 679-688. https://doi.org/10.1016/j.enbuild.2007.05.002.
  35. Ulfkjaer, J.P., Hansen, L.P., Qvist, S. and Madsen, S.H. (1996), "Fracture energy of ordinary concrete beams at different rates of loading", Struct. Shock Impact IV., 25, 1-11. https://doi.org/10.2495/SUSI960381.
  36. Venkateswara, R.S., Seshagiri, R.M.V. and Ramaseshu, D. Rathish, K.P. (2012), "Durability performance of selfcompacting concrete", Biomed. Chromatogr., 16(1), 31-40. https://doi.org/10.1016/j.conbuildmat.2012.07.049.
  37. Wang, H.Y. (2012), "Reason analysis and processing method of cement concrete pavement broken slab", Shanxi Architecture. 2012(33), 92.
  38. Xu, X.P. and Needleman, A. (1994), "Numerical simulations of fast crack growth in brittle solids", J. Mech. Phys. Solid., 42(9), 1397-1434. https://doi.org/10.1016/0022-5096(94)90003-5.
  39. Yung, W.H., Yung, L.C. and Hua, L.H. (2013), "A study of the durability properties of waste tire rubber applied to selfcompacting concrete", Constr. Build. Mater., 41(41), 665-672. https://doi.org/10.1016/j.conbuildmat.2012.11.019.
  40. Zak, A., Krawczuk, M. and Ostachowicz, W. (2006), "Propagation of in-plane waves in an isotropic panel with a crack", Finite Elem. Anal. Des., 42(11), 929-941. https://doi.org/10.1016/j.finel.2006.01.013.
  41. Zhai, C., Wang, X., Kong, J., Li, S. and Xie, L. (2017), "A sophisticated simulation for the fracture behavior of concrete material using XFEM", Earthq. Eng. Eng. Vib., 16(4), 859-881. https://doi.org/10.1007/s11803-017-0393-x.
  42. Zhang, X.F. and Xu, S.l. (2008), "Determination of fracture energy of three-point bending concrete beam using relationship between load and crack-mouth opening displacement", J. Hydraul. Eng., 39(6), 714-719. https://doi.org/10.3321/j.issn:0559-9350.2008.06.012
  43. Zheng, L., Huo, X.S. and Yuan, Y. (2008), "Strength, modulus of elasticity, and brittleness index of rubberized concrete", J. Mater. Civil. Eng., 20(11), 692-699. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:11(692).
  44. Zhou, R. and Lu, Y. (2018), "A mesoscale interface approach to modelling fractures in concrete for material investigation", Constr. Build. Mater., 165, 608-620. https://doi.org/10.1016/j.conbuildmat.2018.01.040.
  45. Zhu, X.Y., Chen, X.D., Shen, N., Tian, H.X., Fan, X.Q. and Lu, J. (2018), "Mechanical properties of pervious concrete with recycled aggregate", Comput. Concrete., 21(6), 623-635. https://doi.org/10.12989/cac.2018.21.6.623.
  46. Zi, G. and Belytschko, T. (2010), "New crack-tip elements for XFEM and applications to cohesive cracks", Int. J. Numer. Meth. Eng., 57(15), 2221-2240. ttps://doi.org/10.1002/nme.849.

Cited by

  1. Forced vibration analysis of a micro sandwich plate with an isotropic/orthotropic cores and polymeric nanocomposite face sheets vol.28, pp.3, 2019, https://doi.org/10.12989/cac.2021.28.3.259