References
- Belytschko, T., Gracie, R. and Ventura, G. (2009), "TOPICAL REVIEW: A review of extended/generalized finite element methods for material modeling", Model. Simul. Mater. SC., 17(4).
- Bu, J.W., Chen, X.D., Liu, S.S., Li, S.T. and Shen, N. (2018), "Experimental study on the dynamic behavior of pervious concrete for permeable pavement", Comput. Concrete, 22(3), 291-303. https://doi.org/10.12989/cac.2018.22.3.291.
- Chen, X., Bu, J., Fan, X., Lu, J. and Xu, L. (2017), "Effect of loading frequency and stress level on low cycle fatigue behavior of ordinary concrete in direct tension", Constr. Build. Mater., 133, 367-375. https://doi.org/10.1016/j.conbuildmat.2016.12.085.
- Chen, X., Wu, S. and Zhou, J. (2013), "Experimental study and analytical formulation of mechanical behavior of concrete", Constr. Build. Mater., 47(10), 662-670. https://doi.org/10.1016/j.conbuildmat.2013.05.041.
- Chen, X., Wu, S. and Zhou, J. (2014), "Strength values of cementitious materials in bending and tension test methods", J. Mater. Civil Eng., 26(3), 484-490. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000846.
- Dong, W., Zhang, X., Zhang, B. and Wu, Q. (2018), "Influence of sustained loading on fracture properties of concrete", Eng. Fract. Mech., 200, 134-145. https://doi.org/10.1016/j.engfracmech.2018.07.034.
- Fakhri, M. and Amoosoltani, E. (2017), "Crack behavior analysis of roller compacted concrete mixtures containing reclaimed asphalt pavement and crumb rubber", Eng. Fract. Mech., 180, 43-59. https://doi.org/10.1016/j.engfracmech.2017.05.011.
- Gaedicke, C., Roesler, J. and Evangelista Jr, F. (2012), "Threedimensional cohesive crack model prediction of the flexural capacity of concrete slabs on soil", Eng. Fract. Mech., 94, 1-12. https://doi.org/10.1016/j.engfracmech.2012.04.029.
- Gao, H. (2007), "Influence factors analysis of broken slab on cement concrete pavement", Forest Eng., 4.
- Gencel, O., Ozel, C., Brostow, W. and MartA-nez-Barrera, G. (2015), "Mechanical properties of self-compacting concrete reinforced with polypropylene fibres", Mater. Res. Innov., 15(3), 216-225. https://doi.org/10.1179/143307511X13018917925900.
- Guan, J., Hu, X. and Li, Q. (2016), "In-depth analysis of notched 3-p-b concrete fracture", Eng. Fract. Mech., 165, 57-71. https://doi.org/10.1016/j.engfracmech.2016.08.020.
- Guiamatsia, I., Falzon, B.G., Davies, G.A.O. and Iannucci, L. (2009), "Element-free Galerkin modelling of composite damage", Compos. Sci. Technol., 69(15-16), 2640-2648. https://doi.org/10.1016/j.compscitech.2009.08.005.
- Hesami, S., Hikouei, I.S. and Emadi, S.A.A. (2016), "Mechanical behavior of self-compacting concrete pavements incorporating recycled tire rubber crumb and reinforced with polypropylene fiber", J. Clean. Prod., 133, 228-234. ps://doi.org/10.1016/j.jclepro.2016.04.079.
- Hillerborg, A. (1985), "The theoretical basis of a method to determine the fracture energy GF of concrete", Mater. Struct., 18(4), 291-296. https://doi.org/10.1007/BF02472919.
- Hou, Y., Yue, P., Xin, Q., Pauli, T. and Sun, W. (2014), "Fracture failure of asphalt binder in mixed mode (Modes I and II) by using phase-field model", Road Mater. Pavement, 15(1), 167-181. https://doi.org/10.1080/14680629.2013.866155.
- Ioannides, A.M. and Peng, J. (2004), "Finite element simulation of crack growth in concrete slabs: Implications for pavement design", Proceedings of the Fifth International Workshop on Fundamental Modeling of Concrete Pavements, Istanbul, Turkey, April.
- Khaloo, A.R., Dehestani, M. and Rahmatabadi, P. (2008), "Mechanical properties of concrete containing a high volume of tire-rubber particles", Waste Manage., 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015.
- Kim, H.B. and Lee, S.H. (2002), "Reliability-based design model applied to mechanistic empirical pavement design", KSCE J. Civil Eng., 6(3), 263-272. https://doi.org/10.1007/BF02829149.
- Kumar, S., Singh, I.V. and Mishra, B.K. (2014), "XFEM simulation of stable crack growth using J-R, curve under finite strain plasticity", Int. J. Meth. Mater. Des., 10(2), 165-177. https://doi.org/10.1007/s10999-014-9238-1.
- Long, G., Gao, Y. and Xie, Y. (2015), "Designing more sustainable and greener self-compacting concrete", Constr. Build. Mater., 84, 301-306. https://doi.org/10.1016/j.conbuildmat.2015.02.072.
- Merhej, T. and Feng, D.C. (2011), "Parameter sensitivity analysis of airport rigid pavement thickness using FAARFIELD program", Adv. Mater., 243-249, 4068-4074. https://doi.org/10.4028/www.scientific.net/AMR.243-249.4068.
- Modarres, A. and Shabani, H. (2015), "Investigating the effect of aircraft impact loading on the longitudinal top-down crack propagation parameters in asphalt runway pavement using fracture mechanics", Eng. Fract. Mech., 150, 28-46. https://doi.org/10.1016/j.engfracmech.2015.10.024.
- Najim, K.B. (2012), "Mechanical and dynamic properties of selfcompacting crumb rubber modified concrete", Constr. Build. Mater., 27(1), 521-530. https://doi.org/10.1016/j.conbuildmat.2011.07.013.
- Ooi, E.T. and Yang, Z.J. (2010), "A hybrid finite element-scaled boundary finite element method for crack propagation modelling", Comput. Method. Appl. M., 199(17-20), 1178-1192. https://doi.org/10.1016/j.cma.2009.12.005.
- Qing, L., Shi, X., Mu, R. and Cheng, Y. (2018), "Determining tensile strength of concrete based on experimental loads in fracture test", Eng. Fract. Mech., 202, 87-102. https://doi.org/10.1016/j.engfracmech.2018.09.017.
- Sallier, L. and Forquin, P. (2012), "On the use of Hillerborg regularization method to model the softening behaviour of concrete subjected to dynamic tensile loading", E. EPJ-Spec. Topic., 206(1), 97-105. https://doi.org/10.1140/epjst/e2012-01591-5.
- Shah, S.P. (1990), "Determination of fracture parameters (KICS and CTODC) of ordinary concrete using three-point bend tests", Mater. Struct., 23(6), 457-460. https://doi.org/10.1007/BF02472029.
- Singh, I.V., Mishra, B.K., Bhattacharya, S. and Patil, R.U. (2012), "The numerical simulation of fatigue crack growth using extended finite element method", Int. J. Fatig., 36(1), 109-119. https://doi.org/10.1016/j.ijfatigue.2011.08.010.
-
Skarzynski, L., Nitka, M. and Tejchman, J. (2015), "Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray
${\mu}CT$ images of internal structure", Eng. Fract. Mech., 147, 13-35. https://doi.org/10.1016/j.engfracmech.2015.08.010. - Sukontasukkul, P. and Chaikaew, C. (2006), "Properties of concrete pedestrian block mixed with crumb rubber", Constr. Build. Mater., 20(7), 450-457. https://doi.org/10.1016/j.conbuildmat.2005.01.040.
- Reda Taha, M.M., El-Dieb, A.S., Abd El-Wahab, M.A. and Abdel-Hameed, M.E. (2008), "Mechanical, fracture, and microstructural investigations of rubber concrete", J. Mater. Civil Eng., 20(10), 640-649. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:10(640).
- Tao, M. (2017), "Application of waste rubber asphalt mixture in the pavement maintenance", Transport. Sci..
- Trivedi, N. and Singh, R.K. (2015), "Chattopadhyay, Investigation on fracture parameters of concrete through optical crack profile and size effect studies", Eng. Fract. Mech., 147, 119-139. https://doi.org/10.1016/j.engfracmech.2015.08.027.
- Turgut, P. and Yesilata, B. (2008), "Physico-mechanical and thermal performances of newly developed rubber-added bricks", Energy Build., 40(5), 679-688. https://doi.org/10.1016/j.enbuild.2007.05.002.
- Ulfkjaer, J.P., Hansen, L.P., Qvist, S. and Madsen, S.H. (1996), "Fracture energy of ordinary concrete beams at different rates of loading", Struct. Shock Impact IV., 25, 1-11. https://doi.org/10.2495/SUSI960381.
- Venkateswara, R.S., Seshagiri, R.M.V. and Ramaseshu, D. Rathish, K.P. (2012), "Durability performance of selfcompacting concrete", Biomed. Chromatogr., 16(1), 31-40. https://doi.org/10.1016/j.conbuildmat.2012.07.049.
- Wang, H.Y. (2012), "Reason analysis and processing method of cement concrete pavement broken slab", Shanxi Architecture. 2012(33), 92.
- Xu, X.P. and Needleman, A. (1994), "Numerical simulations of fast crack growth in brittle solids", J. Mech. Phys. Solid., 42(9), 1397-1434. https://doi.org/10.1016/0022-5096(94)90003-5.
- Yung, W.H., Yung, L.C. and Hua, L.H. (2013), "A study of the durability properties of waste tire rubber applied to selfcompacting concrete", Constr. Build. Mater., 41(41), 665-672. https://doi.org/10.1016/j.conbuildmat.2012.11.019.
- Zak, A., Krawczuk, M. and Ostachowicz, W. (2006), "Propagation of in-plane waves in an isotropic panel with a crack", Finite Elem. Anal. Des., 42(11), 929-941. https://doi.org/10.1016/j.finel.2006.01.013.
- Zhai, C., Wang, X., Kong, J., Li, S. and Xie, L. (2017), "A sophisticated simulation for the fracture behavior of concrete material using XFEM", Earthq. Eng. Eng. Vib., 16(4), 859-881. https://doi.org/10.1007/s11803-017-0393-x.
- Zhang, X.F. and Xu, S.l. (2008), "Determination of fracture energy of three-point bending concrete beam using relationship between load and crack-mouth opening displacement", J. Hydraul. Eng., 39(6), 714-719. https://doi.org/10.3321/j.issn:0559-9350.2008.06.012
- Zheng, L., Huo, X.S. and Yuan, Y. (2008), "Strength, modulus of elasticity, and brittleness index of rubberized concrete", J. Mater. Civil. Eng., 20(11), 692-699. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:11(692).
- Zhou, R. and Lu, Y. (2018), "A mesoscale interface approach to modelling fractures in concrete for material investigation", Constr. Build. Mater., 165, 608-620. https://doi.org/10.1016/j.conbuildmat.2018.01.040.
- Zhu, X.Y., Chen, X.D., Shen, N., Tian, H.X., Fan, X.Q. and Lu, J. (2018), "Mechanical properties of pervious concrete with recycled aggregate", Comput. Concrete., 21(6), 623-635. https://doi.org/10.12989/cac.2018.21.6.623.
- Zi, G. and Belytschko, T. (2010), "New crack-tip elements for XFEM and applications to cohesive cracks", Int. J. Numer. Meth. Eng., 57(15), 2221-2240. ttps://doi.org/10.1002/nme.849.
Cited by
- Forced vibration analysis of a micro sandwich plate with an isotropic/orthotropic cores and polymeric nanocomposite face sheets vol.28, pp.3, 2019, https://doi.org/10.12989/cac.2021.28.3.259