References
- Banh, T., Shin, S. and Lee, D. (2018), "Topology optimization for thin plate on elastic foundations by using multi-material", Steel Compos. Struct., 27(2), https://doi.org/10.12989/scs.2018.27.2.177.
- Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput Methods Appl Mech Eng, 71(2), 197-224. https://doi.org/10.1016/0045-7825(88)90086-2.
- Bendsoe, M.P. and Sigmund, O. (2003), Topology Optimization: Theory, Methods and Applications, Berlin, Springer-Verlag, Germany.
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088.
- Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287.
- Da, D., Xia, L., Li, G. and Huang, X. (2017), "Evolutionary topology optimization of continuum structures with smooth boundary representation", Struct. Multidisciplinary Opt., 17, 1- 17. https://doi.org/10.1007/s00158-017-1846-6.
- Du, J. and Olhoff, N. (2007), "Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps", Struct. Multidisciplinary Opt., 34, 91-110. https://doi.org/10.1007/s00158-007-0101-y.
- Hadji, L., Khelifa, Z. and Adda Bedia, E.A. (2016), "A new higher order shear deformation model for functionally graded beams", KSCE J. Civil Eng., 20(5), 1835-1841. https://doi.org/10.1007/s12205-015-0252-0.
- Hadji, L., Zouatnia, N. and Kassoul, A. (2017), "Wave propagation in functionally graded beams using various higher-order shear deformation beams theories", Struct. Eng. Mech., 62(2), 143-149. https://doi.org/10.12989/sem.2017.62.2.143.
- Huang, X. and Xie, Y.M. (2007), "Convergent and meshindependent solutions for the bidirectional evolutionary structural optimization method", Finite Elements Anal. Design, 43, 1039-1049. https://doi.org/10.1016/j.finel.2007.06.006.
- Huang, X., Zuo, Z. and Xie, Y. (2010), "Evolutionary topological optimization of vibrating continuum structures for natural frequencies", Comput. Struct., 88(5-6), 357-364. https://doi.org/10.1016/j.compstruc.2009.11.011.
- Kemin, Z. (2016), "Topology Optimization of bracing systems using a truss-like material model", Struct. Eng. Mech., 58(2), 2016. https://doi.org/10.12989/sem.2016.58.2.231.
- Kosaka, I. and Swan, C.C. (1999), "A symmetry reduction method for continuum structural topology optimization", Comput. Struct., 70, 47-61. https://doi.org/10.1016/S0045-7949(98)00158-8.
- Kunakote, T. and Bureerat, S. (2011), "Multi-objective topology optimization using evolutionary algorithms", Eng. Optimization, 43(5), 541-557. https://doi.org/10.1080/0305215X.2010.502935.
- Liu, Q., Chan, R. and Huang, X. (2016), "Concurrent topology optimization of macrostructures and material microstructures for natural frequency", Mater. Design, 106, 380-390. https://doi.org/10.1016/j.matdes.2016.05.115.
- Ma, Z.D., Cheng, H.C. and Kikuchi, N. (1995), "Topological design for vibrating structures", Comput Methods Appl. Mech. Eng., 121, 259-280. https://doi.org/10.1016/0045-7825(94)00714-X.
- Munk, D.J., et al. (2018), "Multiobjective and multi-physics topology optimization using an updated smart normal constraint bi-directional evolutionary structural optimization method", Struct. Multidisciplinary Opt., 57(2), 665-688. https://doi.org/10.1007/s00158-017-1781-6.
- Nguyen, X.H. and Lee, J. (2015), "Sizing, shape and topology optimization of trusses with energy approach", Struct. Eng. Mech., 56(1), 107-121. https://doi.org/10.12989/sem.2015.56.1.107.
- Pedersen, N.L. (2000), "Maximization of eigenvalues using topology optimization", Struct. Multidisciplinary Opt., 20, 2-11. https://doi.org/10.1007/s001580050130.
- Ritz, A. (2001), "Sufficiency of a finite exponent in SIMP (power law) methods", Struct. Multidiscip. Optimiz., 21, 159-163. https://doi.org/10.1007/s001580050180.
- Rozvany, G., Zhou, M. and Birker, T. (1992), "Generalized shape optimization without homogenization", Struct. Optimiz., 4, 250-254. https://doi.org/10.1007/BF01742754.
- Sethian, J.A. and Wiegmann, A. (2000), "Structural boundary design via level set and immersed interface methods", J. Comput. Phys., 163, 489-528. https://doi.org/10.1006/jcph.2000.6581.
- Sigmund, O. and Petersson, J. (1998), "Numerical instability in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima", Struct. Optimiz., 16, 68-75. https://doi.org/10.1007/BF01214002.
- Sun, X. F., Yang, J., Xie, Y. M., Huang, X., and Zuo, Z. H. (2011), "Topology optimization of composite structure using bidirectional evolutionary structural optimization method". Procedia Eng., 14, 2980-2985. https://doi.org/10.1016/j.proeng.2011.07.375.
- Teimouri, M. and Asgari, M. (2018), "Developing BESO topology optimization algorithm of continuum structures for stiffness and fundamental frequency considering geometrical symmetry constraint", Amirkabir J. Mech. Eng., 2, https://doi.org/10.22060/mej.2018.13881.5741.
- Tenek, L.H. and Hagiwara, I. (1994), "Eigenfrequency maximization of plates by optimization of topology using homogenization and mathematical programming", JSME J., 37, 667-677. https://doi.org/10.1299/jsmec1993.37.667.
- Wang, M.Y., Wang, X. and Guo, D. (2003), "A level set method for structural topology optimization", Comput. Methods Appl. Mech. Eng., 192, 227-234. https://doi.org/10.1016/S0045- 7825(02)00559-5.
- Xia, L., Zhang, L., Xia, Q. and Shi, T. (2018), "Stress-based topology optimization using bi-directional evolutionary structural optimization method". Comput. Methods Appl. Mech. Eng., 333, 356-370. https://doi.org/10.1016/j.cma.2018.01.035.
- Xia, L., Fritzen, F. and Breitkopf, P. (2017), "Evolutionary topology optimization of elastoplastic structures", Struct. Multidisciplinary Opt., 55(2), 569-581. https://doi.org/10.1007/s00158-016-1523-1.
- Xie, Y.M. and Steven, G.P. (1997), Evolutionary Structural Optimization, Springer, London, United Kingdom.
- Xie, Y.M. and Steven, G.P. (1993), "A simple evolutionary procedure for structural optimization", Comput Struct, 49, 885-896. https://doi.org/10.1016/0045-7949(93)90035-C
- Yang, Z., Zhou, K. and Qiao, S. (2018), "Topology Optimization of reinforced concrete structure using composite truss-like model", Struct. Eng. Mech., 67(1), 79-85. https://doi.org/10.12989/sem.2018.67.1.079.
- Yang, X.Y., Xei, Y.M., Steven, G.P. and Querin, O.M. (1999), "Bidirectional evolutionary method for stiffness optimization", AIAA J., 37(11), 1483-1488. https://doi.org/10.2514/2.626.
- Yang, X.Y., Xie, Y.M. Steven, G.P. and Querin, O.M. (1999), "Topology optimization for frequencies using an evolutionary method", J. Struct. Eng., 125(12), 1432-1438. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:12(1432)/
- Zhou, M. and Gin, R. (1991), "The COC algorithm. Part II: Topological geometry and generalized shape optimization", Comput. Methods Appl. Mech. Eng., 89, 197-224.
- Zuo, Z.H., Xie, Y.M. and Huang, X. (2012), "Evolutionary topology optimization of structures with multiple displacement and frequency constraints", Adv. Struct. Eng., 15(2), 359-372. https://doi.org/10.1260%2F1369-4332.15.2.359. https://doi.org/10.1260/1369-4332.15.2.359