DOI QR코드

DOI QR Code

Multi-objective BESO topology optimization for stiffness and frequency of continuum structures

  • Teimouri, Mohsen (Research laboratory of passive safety systems, Faculty of Mechanical Engineering, K. N. Toosi University of Technology) ;
  • Asgari, Masoud (Research laboratory of passive safety systems, Faculty of Mechanical Engineering, K. N. Toosi University of Technology)
  • Received : 2018.10.18
  • Accepted : 2019.05.23
  • Published : 2019.10.25

Abstract

Topology optimization of structures seeking the best distribution of mass in a design space to improve the structural performance and reduce the weight of a structure is one of the most comprehensive issues in the field of structural optimization. In addition to structures stiffness as the most common objective function, frequency optimization is of great importance in variety of applications too. In this paper, an efficient multi-objective Bi-directional Evolutionary Structural Optimization (BESO) method is developed for topology optimization of frequency and stiffness in continuum structures simultaneously. A software package including a Matlab code and Abaqus FE solver has been created for the numerical implementation of multi-objective BESO utilizing the weighted function method. At the same time, by considering the weaknesses of the optimized structure in single-objective optimizations for stiffness or frequency problems, slight modifications have been done on the numerical algorithm of developed multi-objective BESO in order to overcome challenges due to artificial localized modes, checker boarding and geometrical symmetry constraint during the progressive iterations of optimization. Numerical results show that the proposed Multiobjective BESO method is efficient and optimal solutions can be obtained for continuum structures based on an existent finite element model of the structures.

Keywords

References

  1. Banh, T., Shin, S. and Lee, D. (2018), "Topology optimization for thin plate on elastic foundations by using multi-material", Steel Compos. Struct., 27(2), https://doi.org/10.12989/scs.2018.27.2.177.
  2. Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput Methods Appl Mech Eng, 71(2), 197-224. https://doi.org/10.1016/0045-7825(88)90086-2.
  3. Bendsoe, M.P. and Sigmund, O. (2003), Topology Optimization: Theory, Methods and Applications, Berlin, Springer-Verlag, Germany.
  4. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088.
  5. Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287.
  6. Da, D., Xia, L., Li, G. and Huang, X. (2017), "Evolutionary topology optimization of continuum structures with smooth boundary representation", Struct. Multidisciplinary Opt., 17, 1- 17. https://doi.org/10.1007/s00158-017-1846-6.
  7. Du, J. and Olhoff, N. (2007), "Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps", Struct. Multidisciplinary Opt., 34, 91-110. https://doi.org/10.1007/s00158-007-0101-y.
  8. Hadji, L., Khelifa, Z. and Adda Bedia, E.A. (2016), "A new higher order shear deformation model for functionally graded beams", KSCE J. Civil Eng., 20(5), 1835-1841. https://doi.org/10.1007/s12205-015-0252-0.
  9. Hadji, L., Zouatnia, N. and Kassoul, A. (2017), "Wave propagation in functionally graded beams using various higher-order shear deformation beams theories", Struct. Eng. Mech., 62(2), 143-149. https://doi.org/10.12989/sem.2017.62.2.143.
  10. Huang, X. and Xie, Y.M. (2007), "Convergent and meshindependent solutions for the bidirectional evolutionary structural optimization method", Finite Elements Anal. Design, 43, 1039-1049. https://doi.org/10.1016/j.finel.2007.06.006.
  11. Huang, X., Zuo, Z. and Xie, Y. (2010), "Evolutionary topological optimization of vibrating continuum structures for natural frequencies", Comput. Struct., 88(5-6), 357-364. https://doi.org/10.1016/j.compstruc.2009.11.011.
  12. Kemin, Z. (2016), "Topology Optimization of bracing systems using a truss-like material model", Struct. Eng. Mech., 58(2), 2016. https://doi.org/10.12989/sem.2016.58.2.231.
  13. Kosaka, I. and Swan, C.C. (1999), "A symmetry reduction method for continuum structural topology optimization", Comput. Struct., 70, 47-61. https://doi.org/10.1016/S0045-7949(98)00158-8.
  14. Kunakote, T. and Bureerat, S. (2011), "Multi-objective topology optimization using evolutionary algorithms", Eng. Optimization, 43(5), 541-557. https://doi.org/10.1080/0305215X.2010.502935.
  15. Liu, Q., Chan, R. and Huang, X. (2016), "Concurrent topology optimization of macrostructures and material microstructures for natural frequency", Mater. Design, 106, 380-390. https://doi.org/10.1016/j.matdes.2016.05.115.
  16. Ma, Z.D., Cheng, H.C. and Kikuchi, N. (1995), "Topological design for vibrating structures", Comput Methods Appl. Mech. Eng., 121, 259-280. https://doi.org/10.1016/0045-7825(94)00714-X.
  17. Munk, D.J., et al. (2018), "Multiobjective and multi-physics topology optimization using an updated smart normal constraint bi-directional evolutionary structural optimization method", Struct. Multidisciplinary Opt., 57(2), 665-688. https://doi.org/10.1007/s00158-017-1781-6.
  18. Nguyen, X.H. and Lee, J. (2015), "Sizing, shape and topology optimization of trusses with energy approach", Struct. Eng. Mech., 56(1), 107-121. https://doi.org/10.12989/sem.2015.56.1.107.
  19. Pedersen, N.L. (2000), "Maximization of eigenvalues using topology optimization", Struct. Multidisciplinary Opt., 20, 2-11. https://doi.org/10.1007/s001580050130.
  20. Ritz, A. (2001), "Sufficiency of a finite exponent in SIMP (power law) methods", Struct. Multidiscip. Optimiz., 21, 159-163. https://doi.org/10.1007/s001580050180.
  21. Rozvany, G., Zhou, M. and Birker, T. (1992), "Generalized shape optimization without homogenization", Struct. Optimiz., 4, 250-254. https://doi.org/10.1007/BF01742754.
  22. Sethian, J.A. and Wiegmann, A. (2000), "Structural boundary design via level set and immersed interface methods", J. Comput. Phys., 163, 489-528. https://doi.org/10.1006/jcph.2000.6581.
  23. Sigmund, O. and Petersson, J. (1998), "Numerical instability in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima", Struct. Optimiz., 16, 68-75. https://doi.org/10.1007/BF01214002.
  24. Sun, X. F., Yang, J., Xie, Y. M., Huang, X., and Zuo, Z. H. (2011), "Topology optimization of composite structure using bidirectional evolutionary structural optimization method". Procedia Eng., 14, 2980-2985. https://doi.org/10.1016/j.proeng.2011.07.375.
  25. Teimouri, M. and Asgari, M. (2018), "Developing BESO topology optimization algorithm of continuum structures for stiffness and fundamental frequency considering geometrical symmetry constraint", Amirkabir J. Mech. Eng., 2, https://doi.org/10.22060/mej.2018.13881.5741.
  26. Tenek, L.H. and Hagiwara, I. (1994), "Eigenfrequency maximization of plates by optimization of topology using homogenization and mathematical programming", JSME J., 37, 667-677. https://doi.org/10.1299/jsmec1993.37.667.
  27. Wang, M.Y., Wang, X. and Guo, D. (2003), "A level set method for structural topology optimization", Comput. Methods Appl. Mech. Eng., 192, 227-234. https://doi.org/10.1016/S0045- 7825(02)00559-5.
  28. Xia, L., Zhang, L., Xia, Q. and Shi, T. (2018), "Stress-based topology optimization using bi-directional evolutionary structural optimization method". Comput. Methods Appl. Mech. Eng., 333, 356-370. https://doi.org/10.1016/j.cma.2018.01.035.
  29. Xia, L., Fritzen, F. and Breitkopf, P. (2017), "Evolutionary topology optimization of elastoplastic structures", Struct. Multidisciplinary Opt., 55(2), 569-581. https://doi.org/10.1007/s00158-016-1523-1.
  30. Xie, Y.M. and Steven, G.P. (1997), Evolutionary Structural Optimization, Springer, London, United Kingdom.
  31. Xie, Y.M. and Steven, G.P. (1993), "A simple evolutionary procedure for structural optimization", Comput Struct, 49, 885-896. https://doi.org/10.1016/0045-7949(93)90035-C
  32. Yang, Z., Zhou, K. and Qiao, S. (2018), "Topology Optimization of reinforced concrete structure using composite truss-like model", Struct. Eng. Mech., 67(1), 79-85. https://doi.org/10.12989/sem.2018.67.1.079.
  33. Yang, X.Y., Xei, Y.M., Steven, G.P. and Querin, O.M. (1999), "Bidirectional evolutionary method for stiffness optimization", AIAA J., 37(11), 1483-1488. https://doi.org/10.2514/2.626.
  34. Yang, X.Y., Xie, Y.M. Steven, G.P. and Querin, O.M. (1999), "Topology optimization for frequencies using an evolutionary method", J. Struct. Eng., 125(12), 1432-1438. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:12(1432)/
  35. Zhou, M. and Gin, R. (1991), "The COC algorithm. Part II: Topological geometry and generalized shape optimization", Comput. Methods Appl. Mech. Eng., 89, 197-224.
  36. Zuo, Z.H., Xie, Y.M. and Huang, X. (2012), "Evolutionary topology optimization of structures with multiple displacement and frequency constraints", Adv. Struct. Eng., 15(2), 359-372. https://doi.org/10.1260%2F1369-4332.15.2.359. https://doi.org/10.1260/1369-4332.15.2.359