DOI QR코드

DOI QR Code

New QECCs for Multiple Flip Error Correction

다중플립 오류정정을 위한 새로운 QECCs

  • 박동영 (강릉원주대학교 정보통신공학과) ;
  • 김백기 (강릉원주대학교 정보통신공학과)
  • Received : 2019.08.19
  • Accepted : 2019.10.15
  • Published : 2019.10.31

Abstract

In this paper, we propose a new five-qubit multiple bit flip code that can completely protect the target qubit from all multiple bit flip errors using only CNOT gates. The proposed multiple bit flip codes can be easily extended to multiple phase flip codes by embedding Hadamard gate pairs in the root error section as in conventional single bit flip code. The multiple bit flip code and multiple phase flip code in this paper share the state vector error information by four auxiliary qubits. These four-qubit state vectors reflect the characteristic that all the multiple flip errors with Pauli X and Z corrections commonly include a specific root error. Using this feature, this paper shows that low-cost implementation is possible despite the QECC design for multiple-flip error correction by batch processing the detection and correction of Pauli X and Z root errors with only three CNOT gates. The five-qubit multiple bit flip code and multiple phase flip code proposed in this paper have 100% error correction rate and 50% error discrimination rate. All QECCs presented in this paper were verified using QCAD simulator.

본 논문은 CNOT 게이트만을 사용해 모든 다중비트플립 오류들로부터 표적큐비트를 완벽하게 보호할 수 있는 새로운 5-큐비트 다중비트플립코드를 제안하였다. 제안한 다중비트플립코드는 기존의 단일비트플립코드에서와 같이 근원오류부에 Hadamard 게이트 쌍들을 임베딩 할 경우에 쉽게 다중위상플립코드로 확장될 수 있다. 본 논문의 다중비트플립코드와 다중위상플립코드는 4 개 보조큐비트들에 의한 상태벡터 오류정보를 공유한다. 이 4-큐비트 상태벡터들은 Pauli X와 Z 정정이 수반되는 모든 다중플립오류들이 특정 근원오류를 공통으로 포함하는 특성을 반영한다. 이 특성을 이용해 본 논문은 Pauli X와 Z 근원오류의 검출과 정정을 단 3개의 CNOT 게이트로 배치 처리함으로써 다중플립 오류정정을 위한 QECC 설계에도 불구하고 저비용 실현이 가능함을 보였다. 본 논문이 제안한 5-큐비트 다중비트플립코드와 다중위상플립코드는 100% 오류정정율과 50% 오류판별율 특성을 보였다. 이 논문에 제시된 모든 QECC는 QCAD 시뮬레이터를 사용해 검증되었다.

Keywords

References

  1. P. W. Shor, "Scheme for reducing decoherence in quantum computer memory," Phys. Rev. A, Gen. Phys., vol. 52, no. 4, 1995, pp. .2493-2496. https://doi.org/10.1103/PhysRevA.52.R2493
  2. Quantum Shor code, https://en.wikipedia.org/wiki/Quantum_error_correction#The_Shor_code. Accessed: Sept. 23, 2019.
  3. Standard quantum bit flip code, https://en.wikipedia.org/wiki/Quantum_error_correction#The_bit_flip_code, Accessed: Sept. 23, 2019.
  4. Standard quantum phase flip code, https://en.wikipedia.org/wiki/Quantum_error_correction#The_sign_flip_code, Accessed: Sept. 23, 2019.
  5. R. Laflamme, C. Miquel, J. Paz, and W. Zurek, "Perfect Quantum Error Correction Code," Phys. Rev. Lett. 77. 198, 1 July 1996. arXiv:quant-ph/9602019v1 27 Feb 1996. pp. 198-201. https://doi.org/10.1103/PhysRevLett.77.198
  6. T. C. Ralph, "Proposal for a Simple Quantum-Error-Correction Test Gate in Linear Optics," IEEE J. of Selected Topics in Quantum Electronics, vol. 9, no. 6, 2003, pp. 1495-1497. https://doi.org/10.1109/JSTQE.2003.820943
  7. G.J. Milburn, M. Sarover, and C. Ahn, "Quantum control and quantum error correction," 2004 5th Asian Control Conf., Melbourne, Australia,20-23 July 2004. pp. 33-41.
  8. R. Anitha and B. Vijayalakshmi, "Simulation of quantum encoder & decoder with flip bit error correction using reversible quantum gates," 2018 Int. Conf. on Recent Trends in Electrical, Control and Communication (RTECC), Selangor, Malaysia, Mar. 2018, pp. 99-102.
  9. CAD for Quantum Computer Simulator, http://qcad.osdn.jp. Accessed: Sept. 23, 2019.
  10. D. Park and Y. Jeong, "Realizing Mixed-Polarity MCT gates using $NCV-{\mid}_{v_{1}}$ Library," J. of the Korea Institute of Electronic Communication Science, vol. 11, no. 1, 2016, pp. 29-35. https://doi.org/10.13067/JKIECS.2016.11.1.29
  11. D. Park, "A New Function Embedding Method for the Multiple-Controlled Unitary Gate based on Literal Switch," J. of the Korea Institute of Electronic Communication Science, vol. 12, no. 1, 2017, pp. 101-107. https://doi.org/10.13067/JKIECS.2017.12.1.101
  12. D. Park, "Function Embedding and Projective Measurement of Quantum Gate by Probability Amplitude Switch," J. of the Korea Institute of Electronic Communication Science, vol. 12, no. 6, 2017, pp. 1027-1034. https://doi.org/10.13067/JKIECS.2017.12.6.1027