Acknowledgement
Supported by : CONICET, National University of Cuyo
References
- Broadhouse, B.J. and Neilson, A.J. (1987), "Modelling reinforced concrete structures in DYNA3D", Rep. AEEW-M2465, UK At. Energy Authority, Winfrith.
- Cheng, C.T. and Chen, F.L. (2014), "Seismic performance of a rocking bridge pier substructure with frictional hinge dampers", Smart Struct. Syst., 14(4), 501-516. http://dx.doi.org/10.12989/sss.2014.14.4.501.
- Choi, E. et al. (2017), "Cyclic compressive behavior of polyurethane rubber springs for smart dampers", Smart Struct. Syst., 20(6), 739-757. https://doi.org/10.12989/sss.2017.20.6.739.
- CIRSOC (1982), "Reglamento CIRSOC 201: Proyecto, Calculo y Ejecucion de Estructuras de Hormigon Armado y Pretensado" Centro de Investigaion de los Reglamentos Nacionales de Seguridad para las Obras Civiles
- Daniel, Y. and Lavan, O. (2013), "Allocation and sizing of multiple tuned mass dampers for seismic control of irregular structures", In, Geotechnical, Geological and Earthquake Engineering., 323-338.
- Domizio, M. (2016), "Effectiveness analysis of tuned mass damper against structural collapse due to near fault earthquakes", PhD Thesis (in Spanish). 2016.
- Domizio, M. et al. (2017), "Nonlinear dynamic numerical analysis of a RC frame subjected to seismic loading", Eng. Struct., 138, 410-424. https://doi.org/10.1016/j.engstruct.2017.02.031.
- Domizio, M. et al. (2015), "Performance of TMDs on nonlinear structures subjected to near-fault earthquakes", Smart Struct. Syst., 16(4), 725-742. http://dx.doi.org/10.12989/sss.2015.16.4.725.
- Domizio, M. et al. (2015), "Performance of tuned mass damper against structural collapse due to near fault earthquakes", J. Sound Vib., 336, 32-45. https://doi.org/10.1016/j.jsv.2014.10.007.
- Elias, S. et al. (2017), "Distributed tuned mass dampers for Multimode control of benchmark building under seismic excitations", J. Earthq. Eng., 2469, 1-36. https://doi.org/10.1080/13632469.2017.1351407.
- Engle, T. et al. (2015), "Hybrid tuned mass damper and isolation floor slab system optimized for vibration control", J. Earthq. Eng., 19(8), 1197-1221. https://doi.org/10.1080/13632469.2015.1037406.
- Fadel Miguel, L.F. et al. (2016), "A novel approach to the optimum design of MTMDs under seismic excitations", Struct. Control Heal. Monit., 23(11), 1290-1313. https://doi.org/10.1002/stc.1845.
- Greco, R. et al. (2014), "Robust design of tuned mass dampers installed on multi-degree-of-freedom structures subjected to seismic action", Eng. Optim., 47(8), 1-22. https://doi.org/10.1080/0305215X.2014.941288.
- Hallquist, J.O. (2006), "LS-DYNA theory manual"
- Hoang, T. et al. (2016), "Structural impact mitigation of bridge piers using tuned mass damper", Eng. Struct., 112, 287-294. https://doi.org/10.1016/j.engstruct.2015.12.041.
- Hsiao, P.-C. et al. (2016), "Development and testing of naturally buckling steel braces", J. Struct. Eng., 142(1), 4015077. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001319.
- INPRES (1980), "Normas Antisismicas Argentinas NAA-80" Instituto Nacional de Prevencion Sismica.
- Jiang, Q. et al. (2014), "Shaking table model test and FE analysis of a reinforced concrete mega-frame structure with tuned mass dampers", Struct. Des. Tall Spec. Build., 23(18), 1426-1442. https://doi.org/10.1002/tal.1150.
- Jimenez-Alonso, J.F. and Saez, A. (2018), "Motion-based design of TMD for vibrating footbridges under uncertainty conditions", Smart Struct. Syst., 21(6), 727-740. https://doi.org/10.12989/sss.2018.21.6.727.
- Lin, G.-L. et al. (2015), "Vibration control performance of tuned mass dampers with resettable variable stiffness", Eng. Struct., 83, 187-197. https://doi.org/10.1016/j.engstruct.2014.10.041.
- Losanno, D. et al. (2017), "Design and retrofit of multistory frames with elastic-deformable viscous damping braces", J. Earthq. Eng., 1-24. https://doi.org/10.1080/13632469.2017.1387193.
- Lu, Z. et al. (2016), "An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers", Smart Struct. Syst., 18(1), 93-115. https://doi.org/10.12989/sss.2016.18.1.093.
- Lu, Z. et al. (2017), "Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation", Earthq. Eng. Struct. D., 46(5), 697-714. https://doi.org/10.1002/eqe.2826.
- Matta, E. (2013), "Effectiveness of tuned mass dampers against ground motion pulses", J. Struct. Eng., 139(2), 188-198. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000629.
- Matta, E. (2011), "Performance of tuned mass dampers against near-field earthquakes", Struct. Eng. Mech., 39(5), 621-642. https://doi.org/10.12989/sem.2011.39.5.621.
- Miranda, J.C. (2013), "A method for tuning tuned mass dampers for seismic applications", Earthq. Eng. Structual D., 42(7), 1103-1110. https://doi.org/10.1002/eqe.2271.
- Nigdeli, S.M. and Bekdas, G. (2013), "The effect of implsive motions on optimum tuned mass damper parameters", Proceedings of the 11th International Conference on Vibration Problems., 2-10.
- Niu, H. et al. (2018), "Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping", Smart Struct. Syst., 22(6), 727-741. https://doi.org/10.12989/sss.2018.22.6.727.
- Ottosen, N.S. (1977), "A failure criterion for concrete", J. Eng. Mech., 527-535. https://doi.org/10.1061/(asce)em.1943-7889.0000256
- Pisal, A.Y. and Jangid, R.S. (2016), "Vibration control of bridge subjected to multi-axle vehicle using multiple tuned mass friction dampers", Int. J. Adv. Struct. Eng., 8(2), 213-227. https://doi.org/10.1007/s40091-016-0124-y
- Quaranta, G. et al. (2016), "Effectiveness of design procedures for linear TMD installed on inelastic structures under pulse-like ground motion", Earthq. Struct., 10(1), 239-260. https://doi.org/10.12989/eas.2016.10.1.239.
- Rakicevic, Z.T. et al. (2012), "Effectiveness of tune mass damper in the reduction of the seismic response of the structure", Bull. Earthq. Eng., 10(3), 1049-1073. https://doi.org/10.1007/s10518-012-9341-3
- Salvi, J. and Rizzi, E. (2016), "Closed-form optimum tuning formulas for passive Tuned Mass Dampers under benchmark excitations", Smart Struct. Syst., 17(2), 231-256. http://dx.doi.org/10.12989/sss.2016.17.2.231.
- Shen, S. et al. (2017), "Development of a double-sliding friction damper (DSFD) ", Smart Struct. Syst., 20(2), 151-162. https://doi.org/10.12989/sss.2017.20.2.151.
- Sun, C. and Nagarajaiah, S. (2014), "Study on semi-active tuned mass damper with variable damping and stiffness under seismic excitations", Struct. Control Health. Monit., 21(6), 890-906. https://doi.org/10.1002/stc.1620.
- Sun, S. et al. (2018), "Development of magnetorheological elastomers.based tuned mass damper for building protection from seismic events", J. Intel. Mat. Syst. Str., 29(8), 1777-1789. https://doi.org/10.1177/1045389X17754265.
- Trifunac, M. and Brady, A.G. (1975), "A study on the duration of strong earthquake ground motion", Bull. Seismol. Soc. Am., 65, 581-626.
- Warburton, G.B. (1982), "Optimal absorber parameters for various combinations of response and excitation parameters", Earthq. Eng. Struct. D., 10(3), 381-402. https://doi.org/10.1002/eqe.4290100304.
- Yu, Y.-J. et al. (2010), "Analytical studies of a full-scale steel building shaken to collapse", Eng. Struct., 32(10), 3418-3430. https://doi.org/10.1016/j.engstruct.2010.07.015.
Cited by
- Nonlinear dynamic analysis of a RC bridge subjected to seismic loading vol.26, pp.6, 2019, https://doi.org/10.12989/sss.2020.26.6.765
- Near-Fault Ground Motion Influence on the Seismic Responses of a Structure with Viscous Dampers considering SSI Effect vol.2021, 2019, https://doi.org/10.1155/2021/6649124