DOI QR코드

DOI QR Code

Recovery of TRIM25-Mediated RIG-I Ubiquitination through Suppression of NS1 by RNA Aptamers

  • Received : 2019.07.13
  • Accepted : 2019.09.01
  • Published : 2019.10.31

Abstract

Non-structural protein 1 (NS1) of influenza virus has been shown to inhibit the innate immune response by blocking the induction of interferon (IFN). In this study, we isolated two single-stranded RNA aptamers specific to NS1 with $K_d$ values of $1.62{\pm}0.30nM$ and $1.97{\pm}0.27nM$, respectively, using a systematic evolution of ligand by exponential enrichment (SELEX) procedure. The selected aptamers were able to inhibit the interaction of NS1 with tripartite motif-containing protein 25 (TRIM25), and suppression of NS1 enabled retinoic acid inducible gene I (RIG-I) to be ubiquitinated regularly by TRIM25. Additional luciferase reporter assay and quantitative real-time PCR (RT-PCR) experiments demonstrated that suppression of NS1 by the selected aptamers induced IFN production. It is noted that viral replication was also inhibited through IFN induction in the presence of the selected aptamers. These results suggest that the isolated aptamers are strongly expected to be new therapeutic agents against influenza infection.

Keywords

References

  1. Aramini, J.M., Ma, L.C., Zhou, L., Schauder, C.M., Hamilton, K., Amer, B.R., Mack, T.R., Lee, H.W., Ciccosanti, C.T., Zhao, L., et al. (2011). Dimer interface of the effector domain of non-structural protein 1 from influenza A virus: an interface with multiple functions. J. Biol. Chem. 286, 26050-26060. https://doi.org/10.1074/jbc.M111.248765
  2. Basu, D., Walkiewicz, M.P., Frieman, M., Baric, R.S., Auble, D.T., and Engel, D.A. (2009). Novel influenza virus NS1 antagonists block replication and restore innate immune function. J. Virol. 83, 1881-1891. https://doi.org/10.1128/JVI.01805-08
  3. Bornholdt, Z.A. and Prasad, B.V. (2006). X-ray structure of influenza virus NS1 effector domain. Nat. Struct. Mol. Biol. 13, 559-560. https://doi.org/10.1038/nsmb1099
  4. Brody, E.N. and Gold, L. (2000). Aptamers as therapeutic and diagnostic agents. J. Biotechnol. 74, 5-13.
  5. Cheng, C., Dong, J., Yao, L., Chen, A., Jia, R., Huan, L., Guo, J., Shu, Y., and Zhang, Z. (2008). Potent inhibition of human influenza H5N1 virus by oligonucleotides derived by SELEX. Biochem. Biophys. Res. Commun. 366, 670-674. https://doi.org/10.1016/j.bbrc.2007.11.183
  6. Chien, C.Y., Xu, Y., Xiao, R., Aramini, J.M., Sahasrabudhe, P.V., Krug, R.M., and Montelione, G.T. (2004). Biophysical characterization of the complex between double-stranded RNA and the N-terminal domain of the NS1 protein from influenza A virus: evidence for a novel RNA-binding mode. Biochemistry 43, 1950-1962. https://doi.org/10.1021/bi030176o
  7. Cui, S., Eisenacher, K., Kirchhofer, A., Brzozka, K., Lammens, A., Lammens, K., Fujita, T., Conzelmann, K.K., Krug, A., and Hopfner, K.P. (2008). The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I. Mol. Cell 29, 169-179. https://doi.org/10.1016/j.molcel.2007.10.032
  8. Engel, D.A. (2013). The influenza virus NS1 protein as a therapeutic target. Antiviral Res. 99, 409-416. https://doi.org/10.1016/j.antiviral.2013.06.005
  9. Gack, M.U., Albrecht, R.A., Urano, T., Inn, K.S., Huang, I.C., Carnero, E., Farzan, M., Inoue, S., Jung, J.U., and Garcia-Sastre, A. (2009). Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5, 439-449. https://doi.org/10.1016/j.chom.2009.04.006
  10. Gack, M.U., Kirchhofer, A., Shin, Y.C., Inn, K.S., Liang, C., Cui, S., Myong, S., Ha, T., Hopfner, K.P., and Jung, J.U. (2008). Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proc. Natl. Acad. Sci. U. S. A. 105, 16743-16748. https://doi.org/10.1073/pnas.0804947105
  11. Gack, M.U., Shin, Y.C., Joo, C.H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z., Inoue, S., et al. (2007). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916-920. https://doi.org/10.1038/nature05732
  12. Garcia-Sastre, A., Egorov, A., Matassov, D., Brandt, S., Levy, D.E., Durbin, J.E., Palese, P., and Muster, T. (1998). Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252, 324-330. https://doi.org/10.1006/viro.1998.9508
  13. Hale, B.G., Barclay, W.S., Randall, R.E., and Russell, R.J. (2008). Structure of an avian influenza A virus NS1 protein effector domain. Virology 378, 1-5. https://doi.org/10.1016/j.virol.2008.05.026
  14. Jang, K.J., Lee, N.R., Yeo, W.S., Jeong, Y.J., and Kim, D.E. (2008). Isolation of inhibitory RNA aptamers against severe acute respiratory syndrome (SARS) coronavirus NTPase/Helicase. Biochem. Biophys. Res. Commun. 366, 738-744. https://doi.org/10.1016/j.bbrc.2007.12.020
  15. Jureka, A.S., Kleinpeter, A.B., Cornilescu, G., Cornilescu, C.C., and Petit, C.M. (2015). Structural Basis for a Novel Interaction between the NS1 Protein Derived from the 1918 Influenza Virus and RIG-I. Structure 23, 2001-2010. https://doi.org/10.1016/j.str.2015.08.007
  16. Kaisho, T. and Akira, S. (2006). Toll-like receptor function and signaling. J. Allergy Clin. Immunol. 117, 979-987; quiz 988. https://doi.org/10.1016/j.jaci.2006.02.023
  17. Kochs, G., Garcia-Sastre, A., and Martinez-Sobrido, L. (2007). Multiple antiinterferon actions of the influenza A virus NS1 protein. J. Virol. 81, 7011-7021. https://doi.org/10.1128/JVI.02581-06
  18. Liu, J., Lynch, P.A., Chien, C.Y., Montelione, G.T., Krug, R.M., and Berman, H.M. (1997). Crystal structure of the unique RNA-binding domain of the influenza virus NS1 protein. Nat. Struct. Biol. 4, 896-899. https://doi.org/10.1038/nsb1197-896
  19. Livak, K.J. and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT}$ method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  20. Marc, D. (2014). Influenza virus non-structural protein NS1: interferon antagonism and beyond. J. Gen. Virol. 95, 2594-2611. https://doi.org/10.1099/vir.0.069542-0
  21. Pichlmair, A., Schulz, O., Tan, C.P., Naslund, T.I., Liljestrom, P., Weber, F., and Reis e Sousa, C. (2006). RIG-I-mediated antiviral responses to singlestranded RNA bearing 5'-phosphates. Science 314, 997-1001. https://doi.org/10.1126/science.1132998
  22. Tong, S., Zhu, X., Li, Y., Shi, M., Zhang, J., Bourgeois, M., Yang, H., Chen, X., Recuenco, S., Gomez, J., et al. (2013). New world bats harbor diverse influenza A viruses. PLoS Pathog. 9, e1003657. https://doi.org/10.1371/journal.ppat.1003657
  23. Woo, H.M., Kim, K.S., Lee, J.M., Shim, H.S., Cho, S.J., Lee, W.K., Ko, H.W., Keum, Y.S., Kim, S.Y., Pathinayake, P., et al. (2013). Single-stranded DNA aptamer that specifically binds to the influenza virus NS1 protein suppresses interferon antagonism. Antiviral Res. 100, 337-345. https://doi.org/10.1016/j.antiviral.2013.09.004
  24. Wu, N.C., Young, A.P., Al-Mawsawi, L.Q., Olson, C.A., Feng, J., Qi, H., Luan, H.H., Li, X., Wu, T.T., and Sun, R. (2014). High-throughput identification of loss-of-function mutations for anti-interferon activity in the influenza A virus NS segment. J. Virol. 88, 10157-10164. https://doi.org/10.1128/JVI.01494-14
  25. Yoneyama, M. and Fujita, T. (2004). [RIG-I: critical regulator for virusinduced innate immunity]. Tanpakushitsu Kakusan Koso 49, 2571-2578. Japanese.
  26. Zeng, W., Sun, L., Jiang, X., Chen, X., Hou, F., Adhikari, A., Xu, M., and Chen, Z.J. (2010). Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315-330. https://doi.org/10.1016/j.cell.2010.03.029
  27. Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406-3415. https://doi.org/10.1093/nar/gkg595

Cited by

  1. Molecular Evolution of the Influenza A Virus Non-structural Protein 1 in Interspecies Transmission and Adaptation vol.12, 2021, https://doi.org/10.3389/fmicb.2021.693204
  2. Aptamer-Based Antibacterial and Antiviral Therapy against Infectious Diseases vol.64, pp.24, 2019, https://doi.org/10.1021/acs.jmedchem.1c01567