DOI QR코드

DOI QR Code

Clostridium difficile Toxin A Upregulates Bak Expression through PGE2 Pathway in Human Colonocytes

  • Kim, Young Ha (Division of Life Science and Chemistry, College of Natural Science, Daejin University) ;
  • Kim, Ho (Division of Life Science and Chemistry, College of Natural Science, Daejin University)
  • 투고 : 2019.06.17
  • 심사 : 2019.08.26
  • 발행 : 2019.10.28

초록

Clostridium difficile toxin A is known to cause colonic epithelial cell apoptosis, which is considered the main causative event that triggers inflammatory responses in the colon, reflecting the concept that the essential role of epithelial cells in the colon is to form a physical barrier in the gut. We previously showed that toxin A-induced colonocyte apoptosis and subsequent inflammation were dependent on prostaglandin E2 ($PGE_2$) produced in response to toxin A stimulation. However, the molecular mechanism by which $PGE_2$ mediates cell apoptosis in toxin A-exposed colonocytes has remained unclear. Here, we sought to identify the signaling pathway involved in toxin A-induced, $PGE_2$-mediated colonocyte apoptosis. In non-transformed NCM460 human colonocytes, toxin A exposure strongly upregulated expression of Bak, which is known to form mitochondrial outer membrane pores, resulting in apoptosis. RT-PCR analyses revealed that this increase in Bak expression was attributable to toxin A-induced transcriptional upregulation. We also found that toxin A upregulation of Bak expression was dependent on $PGE_2$ production, and further showed that this effect was recapitulated by an Prostaglandin E2(PGE2) receptor-1 receptor agonist, but not by agonists of other EP receptors. Collectively, these results suggest that toxin A-induced cell apoptosis involves $PGE_2$-upregulation of Bak through the EP1 receptor.

키워드

참고문헌

  1. Kim H, Rhee SH, Pothoulakis C, Lamont JT. 2007. Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand. Gastroenterology 133: 875-886. https://doi.org/10.1053/j.gastro.2007.06.063
  2. Kim H, Kokkotou E, Na X, Rhee SH, Moyer MP, Pothoulakis C, et al. 2005. Clostridium difficile toxin A-induced colonocyte apoptosis involves pp.53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129: 1875-1888. https://doi.org/10.1053/j.gastro.2005.09.011
  3. Kim H, Rhee SH, Kokkotou E, Na X, Savidge T, Moyer MP, et al. 2005. Clostridium difficile toxin a regulates inducible cyclooxygenase-2 and prostaglandin E2 synthesis in colonocytes via reactive oxygen species and activation of p38 MAPK. J. Biol. Chem. 280: 21237-21245. https://doi.org/10.1074/jbc.M413842200
  4. He D, Sougioultzis S, Hagen S, Liu J, Keates S, Keates AC, et al. 2002. Clostridium difficile toxin A triggers human colonocyte IL-8 release via mitochondrial oxygen radical generation. Gastroenterology 122: 1048-1057. https://doi.org/10.1053/gast.2002.32386
  5. Kim DH, Hwang JS, Lee IH, Nam ST, Hong J, Zhang P, et al. 2016. The insect peptide CopA3 increases colonic epithelial cell proliferation and mucosal barrier function to prevent inflammatory responses in the gut. J. Biol. Chem. 291: 3209-3223. https://doi.org/10.1074/jbc.M115.682856
  6. Chumbler NM, Farrow MA, Lapierre LA, Franklin JL, Lacy DB. 2016. Clostridium difficile toxins TcdA and TcdB cause colonic tissue damage by distinct mechanisms. Infect. Immun. 84: 2871-2877. https://doi.org/10.1128/IAI.00583-16
  7. Kim DH, Lee IH, Nam ST, Nam HJ, Kang JK, Seok H, et al. 2014. Effect of antisera from Clostridium difficile-infected mice on toxin-A-induced colonic epithelial cell death signaling. J. Microbiol. Biotechnol. 24: 696-703. https://doi.org/10.4014/jmb.1401.01059
  8. Subauste MC, Von Herrath M, Benard V, Chamberlain CE, Chuang TH, Chu K, et al. 2000. Rho family proteins modulate rapid apoptosis induced by cytotoxic T lymphocytes and Fas. J. Biol. Chem. 275: 9725-9733. https://doi.org/10.1074/jbc.275.13.9725
  9. Robb CT, McSorley HJ, Lee J, Aoki T, Yu C, Crittenden S, et al. 2018. Prostaglandin E2 stimulates adaptive IL-22 production and promotes allergic contact dermatitis. J. Allergy Clin. Immunol. 141: 152-162. https://doi.org/10.1016/j.jaci.2017.04.045
  10. Liang X, Wang Q, Shi J, Lokteva L, Breyer RM, Montine TJ, et al. 2008. The prostaglandin E2 EP2 receptor accelerates disease progression and inflammation in a model of amyotrophic lateral sclerosis. Ann. Neurol. 64: 304-314. https://doi.org/10.1002/ana.21437
  11. Huang WT, Niu KC, Chang CK, Lin MT, Chang CP. 2008. Curcumin inhibits the increase of glutamate, hydroxyl radicals and PGE2 in the hypothalamus and reduces fever during LPS-induced systemic inflammation in rabbits. Euro. J. Pharm. 593: 105-111. https://doi.org/10.1016/j.ejphar.2008.07.017
  12. Turull N, Queralt J. 2000. Effect of the COX-2 selective inhibitor l-745,337 on inflammation and organ prostaglandin E2 (PGE2) levels in adjuvant arthritic rats. Inflammation 24: 533-545. https://doi.org/10.1023/A:1007025423232
  13. Lalier L, Pedelaborde F, Braud C, Menanteau J, Vallette FM, Olivier C. 2011. ncrease in intracellular PGE2 induces apoptosis in Bax-expressing colon cancer cell. BMC Cancer 11: 153. https://doi.org/10.1186/1471-2407-11-153
  14. Wu L, Wang Q, Liang X, Andreasson K. 2007. Divergent effects of prostaglandin receptor signaling on neuronal survival. Neurosci. Lett. 421: 253-258. https://doi.org/10.1016/j.neulet.2007.05.055
  15. Huang SK, White ES, Wettlaufer SH, Grifka H, Hogaboam CM, Thannickal VJ, et al. 2009. Prostaglandin E(2) induces fibroblast apoptosis by modulating multiple survival pathways. FASEB J. 23: 4317-4326. https://doi.org/10.1096/fj.08-128801
  16. Pica F, Franzese O, D'Onofrio C, Bonmassar E, Favalli C, Garaci E. 1996. Prostaglandin E2 induces apoptosis in resting immature and mature human lymphocytes: a c-Mycdependent and Bcl-2-independent associated pathway. J. Pharmacol. Exp. Ther. 277: 1793-1800.
  17. Krajewska M, Fenoglio-Preiser CM, Krajewski S, Song K, Macdonald JS, Stemmerman G, et al. 1996. Immunohistochemical analysis of Bcl-2 family proteins in adenocarcinomas of the stomach. Am. J. Pathol. 149: 1449-1457.
  18. Krajewski S, Krajewska M, Reed JC. 1996. Immunohistochemical analysis of in vivo patterns of Bak expression, a proapoptotic member of the Bcl-2 protein family. Cancer Res. 56: 2849-2855.
  19. Pataer A, Fang B, Yu R, Kagawa S, Hunt KK, McDonnell TJ, et al. 2000. Adenoviral Bak overexpression mediates caspasedependent tumor killing. Cancer Res. 60: 788-792.
  20. Hass R, Busche R, Luciano L, Reale E, Engelhardt WV. 1997. Lack of butyrate is associated with induction of Bax and subsequent apoptosis in the proximal colon of guinea pig. Gastroenterology 112: 875-881. https://doi.org/10.1053/gast.1997.v112.pm9041249
  21. Westphal D, Dewson G, Czabotar PE, Kluck RM. 2011. Molecular biology of Bax and Bak activation and action. Biochimica et Biophysica Acta 1813: 521-531. https://doi.org/10.1016/j.bbamcr.2010.12.019
  22. Kiefer MC, Brauer MJ, Powers VC, Wu JJ, Umansky SR, Tomei LD, et al. 1995. Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak. Nature 374: 736-739. https://doi.org/10.1038/374736a0
  23. Sullivan NM, Pellett S, Wilkins TD. 1982. Purification and characterization of toxins A and B of Clostridium difficile. Infect. Immun. 35: 1032-1040. https://doi.org/10.1128/IAI.35.3.1032-1040.1982
  24. Nakayama H, Yokoi H, Fujita J. 1992. Quantification of mRNA by non-radioactive RT-PCR and CCD imaging system. Nucleic Acids Res. 20: 4939. https://doi.org/10.1093/nar/20.18.4939
  25. Yoon IN, Hwang JS, Lee JH, Kim H. 2019. The antimicrobial peptide CopA3 inhibits Clostridium difficile toxin a-induced viability loss and apoptosis in neural cells. J. Microbiol. Biotechnol. 29: 30-36. https://doi.org/10.4014/jmb.1809.08065
  26. Reimund JM, Wittersheim C, Dumont S, Muller CD, Kenney JS, Baumann R, et al. 1996. Increased production of tumour necrosis factor-alpha interleukin-1 beta, and interleukin-6 by morphologically normal intestinal biopsies from patients with Crohn's disease. Gut 39: 684-689. https://doi.org/10.1136/gut.39.5.684
  27. Martinou I, Desagher S, Eskes R, Antonsson B, Andre E, Fakan S, et al. 1999. The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J. Cell Biol. 144: 883-889. https://doi.org/10.1083/jcb.144.5.883
  28. Lim ML, Lum MG, Hansen TM, Roucou X, Nagley P. 2002. On the release of cytochrome c from mitochondria during cell death signaling. J. Biomed. Sci. 9: 488-506. https://doi.org/10.1159/000064722
  29. Priault M, Chaudhuri B, Clow A, Camougrand N, Manon S. 1999. Investigation of bax-induced release of cytochrome c from yeast mitochondria permeability of mitochondrial membranes, role of VDAC and ATP requirement. Euro. J. Biochem. 260: 684-691. https://doi.org/10.1046/j.1432-1327.1999.00198.x
  30. Heimlich G, McKinnon AD, Bernardo K, Brdiczka D, Reed JC, Kain R, et al. 2004. Bax-induced cytochrome c release from mitochondria depends on alpha-helices-5 and -6. Biochem. J. 378: 247-255. https://doi.org/10.1042/bj20031152
  31. Thornborrow EC, Manfredi JJ. 2001. The tumor suppressor protein p53 requires a cofactor to activate transcriptionally the human BAX promoter. J. Biol. Chem. 276: 15598-15608. https://doi.org/10.1074/jbc.M011643200
  32. Baltaziak M, Koda M, Wincewicz A, Sulkowska M, Kanczuga-Koda L, Sulkowski S. 2009. Relationships of P53 and Bak with EPO and EPOR in human colorectal cancer. Anticancer Res. 29: 4151-4156.
  33. Fortuno MA, Zalba G, Ravassa S, D'Elom E, Beaumont FJ, Fortuno A, et al. 1999. p53-mediated upregulation of BAX gene transcription is not involved in Bax-alpha protein overexpression in the left ventricle of spontaneously hypertensive rats. Hypertension 33: 1348-1352. https://doi.org/10.1161/01.HYP.33.6.1348
  34. Kong X, Xu P, Cai WJ, Wang HG, Li BB, Huang GL, et al. 2018. ZBP-89 and Sp1 contribute to Bak expression in hepatocellular carcinoma cells. BMC Cancer 18: 419. https://doi.org/10.1186/s12885-018-4349-y
  35. Asboth G, Phaneuf S, Europe-Finner GN, Toth M, Bernal AL. 1996. Prostaglandin E2 activates phospholipase C and elevates intracellular calcium in cultured myometrial cells: involvement of EP1 and EP3 receptor subtypes. Endocrinology 137: 2572-2579. https://doi.org/10.1210/endo.137.6.8641211
  36. Rojas A, Gueorguieva P, Lelutiu N, Quan Y, Shaw R, Dingledine R. 2014. The prostaglandin EP1 receptor potentiates kainate receptor activation via a protein kinase C pathway and exacerbates status epilepticus. Neurobiol. Dis. 70: 74-89. https://doi.org/10.1016/j.nbd.2014.06.004
  37. Irie A, Sugimoto Y, Namba T, Asano T, Ichikawa A, Negishi M. 1994. The C-terminus of the prostaglandin-E-receptor EP3 subtype is essential for activation of GTP-binding protein. Euro. J. Biochem. 224: 161-166. https://doi.org/10.1111/j.1432-1033.1994.tb20007.x
  38. Soares AS, Costa VM, Diniz C, Fresco P. 2015. Inosine strongly enhances proliferation of human C32 melanoma cells through PLC-PKC-MEK1/2-ERK1/2 and PI3K pathways. Basic Clin. Pharmacol. Toxicol. 116: 25-36. https://doi.org/10.1111/bcpt.12280
  39. Panaretakis T, Laane E, Pokrovskaja K, Bjorklund AC, Moustakas A, Zhivotovsky B, et al. 2005. Doxorubicin requires the sequential activation of caspase-2, protein kinase Cdelta, and c-Jun NH2-terminal kinase to induce apoptosis. Mol. Biol. Cell 16: 3821-3831. https://doi.org/10.1091/mbc.e04-10-0862
  40. Meinhardt G, Roth J, Totok G. 2000. Protein kinase C activation modulates pro- and anti-apoptotic signaling pathways. Euro. J. Cell Biol. 79: 824-833. https://doi.org/10.1078/0171-9335-00100
  41. Chen X, Lv Q, Ma J, Liu Y. 2018. PLC gamma2 promotes apoptosis while inhibits proliferation in rat hepatocytes through PKCD/JNK MAPK and PKCD/p38 MAPK signalling. Cell Prolif. 51: e12437. https://doi.org/10.1111/cpr.12437