DOI QR코드

DOI QR Code

Stable Microbial Community and Specific Beneficial Taxa Associated with Natural Healthy Banana Rhizosphere

  • Fu, Lin (Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University) ;
  • Ou, Yannan (Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University) ;
  • Shen, Zongzhuan (Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University) ;
  • Wang, Beibei (Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, Institute of Tropical Agriculture and Forestry, Hainan University) ;
  • Li, Rong (Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University) ;
  • Shen, Qirong (Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University)
  • Received : 2019.04.29
  • Accepted : 2019.08.25
  • Published : 2019.10.28

Abstract

Banana planting altered microbial communities and induced the enrichment of Fusarium oxysporum in rhizosphere compared with that of forest soil. Diseased plant rhizosphere soil (WR) harbored increased pathogen abundance and showed distinct microbial structures from healthy plant rhizosphere soil (HR). The enriched taxon of Bordetella and key taxon of Chaetomium together with some other taxa showed negative associations with pathogen in HR, indicating their importance in pathogen inhibition. Furthermore, a more stable microbiota was observed in HR than in WR. Taken together, the lower pathogen abundance, specific beneficial microbial taxa and stable microbiota contributed to disease suppression.

Keywords

References

  1. Butler D. 2013. Fungus threatens top banana. Nature 54: 195-196. https://doi.org/10.1038/054195a0
  2. Ploetz RC. 2015. Fusarium wilt of banana. Phytopathology 105: 1512-1521. https://doi.org/10.1094/PHYTO-04-15-0101-RVW
  3. Fu L, Penton CR, Ruan Y, Shen Z, Xue C, Li R, et al. 2017. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol. Biochem. 104: 39-48. https://doi.org/10.1016/j.soilbio.2016.10.008
  4. Raaijmakers JM, Mazzola M. 2016. Soil immune responses. Science 352: 1392-1393. https://doi.org/10.1126/science.aaf3252
  5. Fu L, Ruan Y, Tao C, Li R, Shen Q. 2016. Continuous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression. Sci. Rep. 6: 27731. https://doi.org/10.1038/srep27731
  6. Fierer N, Jackson JA, Vilgalys R, Jackson RB. 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 71: 4117-4120. https://doi.org/10.1128/AEM.71.7.4117-4120.2005
  7. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108: 4516-4522. https://doi.org/10.1073/pnas.1000080107
  8. McGuire KL, Payne SG, Palmer MI, Gillikin CM, Keefe D, Kim SJ, et al. 2013. Digging the New York city skyline: soil fungal communities in green roofs and city parks. PLoS One 8: e58020. https://doi.org/10.1371/journal.pone.0058020
  9. Shen Z, Penton CR, Lv N, Xue C, Yuan X, Ruan Y, et al. 2018. Banana Fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans. Microb. Ecol. 75: 739-750. https://doi.org/10.1007/s00248-017-1052-5
  10. van Elsas JD, Chiurazzi M, Mallon CA, Elhottova D, Kristufek V, Salles JF. 2012. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. USA 109: 1159-1164. https://doi.org/10.1073/pnas.1109326109
  11. Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, et al. 2008. Relative impacts of landuse, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biol. Biochem. 40: 2843-2853. https://doi.org/10.1016/j.soilbio.2008.07.030
  12. Yin C, Hulbert SH, Schroeder KL, Mavrodi O, Mavrodi D, Dhingra A, et al. 2013. Role of bacterial communities in the natural suppression of Rhizoctonia solani bare patch disease of w heat (Triticum aestivum L.). Appl. Environ. Microbiol. 79: 7428-7438. https://doi.org/10.1128/AEM.01610-13
  13. Trivedi P, He Z, Van Nostrand JD, Albrigo G, Zhou J, Wang N. 2012. Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere. ISME J. 6: 363-383. https://doi.org/10.1038/ismej.2011.100
  14. Koberl M, Dita M, Martinuz A, Staver C, Berg G. 2017. Members of Gammaproteobacteria as indicator species of healthy banana plants on Fusarium wilt-infested fields in Central America. Sci. Rep. 7: 45318. https://doi.org/10.1038/srep45318
  15. Pimm SL. 1984. The complexity and stability of ecosystems. Nature 307: 321-326. https://doi.org/10.1038/307321a0
  16. McCann KS. 2000. The diversity-stability debate. Nature 405: 228-233. https://doi.org/10.1038/35012234
  17. Leary DJ, Rip JMK, Petchey OL. 2012. The impact of environmental variability and species composition on the stability of experimental microbial populations and communities. Oikos 121: 327-336. https://doi.org/10.1111/j.1600-0706.2011.19523.x
  18. Dunstan PK, Johnson CR. 2006. Linking richness, community variability, and invasion resistance with patch size. Ecology 87: 2842-2850. https://doi.org/10.1890/0012-9658(2006)87[2842:LRCVAI]2.0.CO;2
  19. Wei Z, Yang T, Friman VP, Xu Y, Shen Q, Jousset A. 2015. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6: 8413. https://doi.org/10.1038/ncomms9413
  20. Manikandan R, Karthikeyan G, Raguchander T. 2017. Soil proteomics for exploitation of microbial diversity in Fusarium wilt infected and healthy rhizosphere soils of tomato. Physiol. Mol. Plant Pathol. 100: 185-193. https://doi.org/10.1016/j.pmpp.2017.10.001
  21. Wang B, Li R, Ruan Y, Ou Y, Zhan Y, Shen Q. 2015. Pineapple-banana rotation reduced the amount of Fusarium oxysporum more than maize-banana rotation mainly through modulating fungal communities. Soil Biol. Biochem. 86: 77-86. https://doi.org/10.1016/j.soilbio.2015.02.021
  22. Olesen J, Bascompte J, Dupont Y, Jordano P. 2007. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104: 19891-19896. https://doi.org/10.1073/pnas.0706375104
  23. Sayyed RZ, Chincholkar SB, Reddy MS, Gangurde NS, Patel PR. 2013. Siderophore producing PGPR for crop nutrition and phytopathogen suppression, pp. 454. In Maheshwari DK (ed.), Bacteria in Agrobiology: Disease Management, Springer, Berlin, Heidelberg.
  24. Imran H, Darine TH, Mohamed G. 2012. In vitro screening of soil bacteria for inhibiting phytopathogenic fungi. Afr. J. Biotechnol. 11: 14660-14670.
  25. Soytong K, Kanokmedhakul S, Kukongviriyapa V, Isobe M. 2001. Application of Chaetomium species (Ketomium) as a new broad spectrum biological fungicide for plant disease control: A review article. Fungal Divers. 7: 1-15.
  26. Alabouvette C. 1999. Fusarium wilt suppressive soils: an example of disease-suppressive soils. Australas. Plant Pathol. 28: 57-64. https://doi.org/10.1071/AP99008

Cited by

  1. Response to Edaphoclimatic Conditions and Crop Management of the Bacterial Microbiome of Musa acuminata Rhizosphere Profiled by 16S rRNA Gene Amplicon Sequencing vol.10, pp.10, 2019, https://doi.org/10.1128/mra.01437-20
  2. Impact of biocontrol microbes on soil microbial diversity in ginger (Zingiber officinale Roscoe) vol.77, pp.12, 2019, https://doi.org/10.1002/ps.6595