DOI QR코드

DOI QR Code

Doping Effect of Yb2O3 on Varistor Properties of ZnO-V2O5-MnO2-Nb2O5 Ceramic Semiconductors

  • Nahm, Choon-Woo (Department of Electrical Engineering, Dongeui University)
  • Received : 2019.07.24
  • Accepted : 2019.09.11
  • Published : 2019.10.27

Abstract

This study describes the doping effect of $Yb_2O_3$ on microstructure, electrical and dielectric properties of $ZnO-V_2O_5-MnO_2-Nb_2O_5$ (ZVMN) ceramic semiconductors sintered at a temperature as low as $900^{\circ}C$. As the doping content of $Yb_2O_3$ increases, the ceramic density slightly increases from 5.50 to $5.54g/cm^3$; also, the average ZnO grain size is in the range of $5.3-5.6{\mu}m$. The switching voltage increases from 4,874 to 5,494 V/cm when the doping content of $Yb_2O_3$ is less than 0.1 mol%, whereas further doping decreases this value. The ZVMN ceramic semiconductors doped with 0.1 mol% $Yb_2O_3$ reveal an excellent nonohmic coefficient as high as 70. The donor density of ZnO gain increases in the range of $2.46-7.41{\times}10^{17}cm^{-3}$ with increasing doping content of $Yb_2O_3$ and the potential barrier height and surface state density at the grain boundaries exhibits a maximum value (1.25 eV) at 0.1 mol%. The dielectric constant (at 1 kHz) decreases from 592.7 to 501.4 until the doping content of $Yb_2O_3$ reaches 0.1 mol%, whereas further doping increases it. The value of $tan{\delta}$ increases from 0.209 to 0.268 with the doping content of $Yb_2O_3$.

Keywords

References

  1. M. Matsuoka, Jpn. J. Appl. Phys., 10, 736 (1971). https://doi.org/10.1143/JJAP.10.736
  2. L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull., 65, 639 (1986).
  3. T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  4. H. R. Pilipp and L. M. Levinson, J. Appl. Phys., 46, 1332 (1976). https://doi.org/10.1063/1.321701
  5. K. Mukae, Am. Ceram. Bull., 66, 1329 (1987).
  6. C.-W. Nahm and C.-H. Park, J. Mater. Sci., 35, 3037 (2000). https://doi.org/10.1023/A:1004749214640
  7. J.-K. Tsai and T.-B. Wu, J. Appl. Phys., 76, 481 (1994).
  8. J.-K. Tsai and T.-B. Wu, Mater. Lett., 26, 199 (1996). https://doi.org/10.1016/0167-577X(95)00217-0
  9. C.-W. Nahm, J. Am. Ceram. Soc., 94, 2269 (2011). https://doi.org/10.1111/j.1551-2916.2011.04626.x
  10. C.-W. Nahm, J. Mater. Sci.: Mater. Electron., 22, 444 (2011). https://doi.org/10.1007/s10854-010-0157-0
  11. C.-W. Nahm, Microelectron. Reliability, 54, 2836 (2014). https://doi.org/10.1016/j.microrel.2014.08.013
  12. C.-W. Nahm, J. Mater. Sci.: Mater. Electron., 23,457 (2012). https://doi.org/10.1007/s10854-011-0512-9
  13. C.-S. Chen, J. Mater. Sci., 38, 1033 (2003). https://doi.org/10.1023/A:1022397730247
  14. H. Pfeiffer and K. M. Knowles, J. Eur. Ceram. Soc., 24, 1199 (2004). https://doi.org/10.1016/S0955-2219(03)00413-8
  15. M. Zhao, X. C. Liu, W. M. Wang, F. Gao and C. S. Tian, Ceram. Int., 34, 1425 (2008). https://doi.org/10.1016/j.ceramint.2007.03.027
  16. Z. Ming, S. Yu and T. C. Sheng, J. Eur. Ceram. Soc., 31, 2331 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.05.040
  17. M. Mirzayi and M. H. Hekmatshoar, Phys. B (Amsterdam, Neth.), 414, 50 (2013). https://doi.org/10.1016/j.physb.2013.01.020
  18. C.-W. Nahm, J. Alloys Compd., 578, 132 (2013) https://doi.org/10.1016/j.jallcom.2013.05.005
  19. C.-W. Nahm, J. Korean Ceram. Soc., 55, 504 (2018) https://doi.org/10.4191/kcers.2018.55.5.10
  20. J. C. Wurst and J. A. Nelson, J. Am. Ceram. Soc., 55,109 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb11224.x
  21. M. Mukae, K. Tsuda and I. Nagasawa, J. Appl. Phys., 50, 447 (1979).