DOI QR코드

DOI QR Code

ENVIRONMENTAL DEPENDENCE OF TYPE IA SUPERNOVA LUMINOSITIES FROM THE YONSEI SUPERNOVA CATALOG

  • Kim, Young-Lo (Universite de Lyon) ;
  • Kang, Yijung (Center for Galaxy Evolution Research and Department of Astronomy, Yonsei University) ;
  • Lee, Young-Wook (Center for Galaxy Evolution Research and Department of Astronomy, Yonsei University)
  • Received : 2019.04.10
  • Accepted : 2019.08.06
  • Published : 2019.10.31

Abstract

There is evidence that the luminosities of Type Ia supernova (SN Ia) depend on their environments. While the impact of this trend on estimating cosmological parameters is widely acknowledged, the origin of this correlation is still under debate. In order to explore this problem, we first construct the YONSEI (YOnsei Nearby Supernova Evolution Investigation) SN catalog. The catalog consists of 1231 spectroscopically confirmed SNe Ia over a wide redshift range (0.01 < z < 1.37) from various SN surveys and includes light-curve fit data from two independent light-curve fitters, SALT2 and MLCS2k2. For a sample of 674 host galaxies, we use the stellar mass and the star formation rate data in Kim et al. (2018). We find that SNe Ia in low-mass and star-forming host galaxies are $0.062{\pm}0.009mag$ and $0.057{\pm}0.010mag$ fainter than those in high-mass and passive hosts, after light-curve corrections with SALT2 and MLCS2k2, respectively. When only local environments of SNe Ia (e.g., locally star-forming and locally passive) are considered, this luminosity difference increases to $0.081{\pm}0.018mag$ for SALT2 and $0.072{\pm}0.018mag$ for MLCS2k2. Considering the significant difference in the mean stellar population age between the two environments, this result suggests that the luminosity evolution of SNe Ia with redshift is most likely the origin of the environmental dependence.

Keywords

References

  1. Balcells, M., Graham, A. W., & Peletier, R. F. 2007, Galactic Bulges from Hubble Space Telescope NICMOS Observations: Global Scaling Relations, ApJ, 665, 1104 https://doi.org/10.1086/519753
  2. Balland, C., Baumont, S., Basa, S., et al. 2009, The ESO/VLT 3rd Year Type Ia Supernova Data Set from the Supernova Legacy Survey, A&A, 507, 85 https://doi.org/10.1051/0004-6361/200912246
  3. Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019, The Zwicky Transient Facility: System Overview, Performance, and First Results, PASP, 131, 018002 https://doi.org/10.1088/1538-3873/aaecbe
  4. Bernardi, M., Meert, A., Vikram, V., et al. 2014, Systematic Effects on the Size-Luminosity Relations of Early- and Late-Type Galaxies: Dependence on Model Fitting and Morphology, MNRAS, 443, 874 https://doi.org/10.1093/mnras/stu1106
  5. Betoule, M., Kessler, R., Guy, J., et al. 2014, Improved Cosmological Constraints from a Joint Analysis of the SDSS-II and SNLS Supernova Samples, A&A, 568, A22 https://doi.org/10.1051/0004-6361/201423413
  6. Bower, R. G., Schaye, J., Frenk, C. S., et al. 2017, The Dark Nemesis of Galaxy Formation: Why Hot Haloes Trigger Black Hole Growth and Bring Star Formation to an End, MNRAS, 465, 32 https://doi.org/10.1093/mnras/stw2735
  7. Bronder, T. J., Hook, I. M., Astier, P., et al. 2008, SNLS Spectroscopy: Testing for Evolution in Type Ia Supernovae, A&A, 477, 717 https://doi.org/10.1051/0004-6361:20077655
  8. Campbell, H., D'Andrea, C. B., Nichol, R. C., et al. 2013, Cosmology with Photometrically Classified Type Ia Supernovae from the SDSS-II Supernova Survey, ApJ, 763, 88 https://doi.org/10.1088/0004-637X/763/2/88
  9. Campbell, H., Fraser, M., & Gilmore, G. 2016, How SN Ia Host-Galaxy Properties Affect Cosmological Parameters, MNRAS, 457, 3470 https://doi.org/10.1093/mnras/stw115
  10. Cappellari, M., McDermid, R. M., Alatalo, K., et al. 2013, The $ATLAS^{3D}$ Project - XX. Mass-Size and Mass- Distributions of Early-Type Galaxies: Bulge Fraction Drives Kinematics, Mass-to-Light Ratio, Molecular Gas Fraction and Stellar Initial Mass Function, MNRAS, 432, 1862 https://doi.org/10.1093/mnras/stt644
  11. Childress, M., Aldering, G., Antilogus, P., et al. 2013, Host Galaxy Properties and Hubble Residuals of Type Ia Supernovae from the Nearby Supernova Factory, ApJ, 770, 108 https://doi.org/10.1088/0004-637X/770/2/108
  12. Childress, M. J., Wolf, C., & Zahid, H. J. 2014, Ages of Type Ia Supernovae over Cosmic Time, MNRAS, 445, 1898 https://doi.org/10.1093/mnras/stu1892
  13. Choi, Y.-Y., Han, D.-H., & Kim, S. S. 2010, Korea Institute for Advanced Study Value-Added Galaxy Catalog, JKAS, 43, 191
  14. Conley, A., Guy, J., Sullivan, M., et al. 2011, Supernova Constraints and Systematic Uncertainties from the First Three Years of the Supernova Legacy Survey, ApJS, 192, 1 https://doi.org/10.1088/0067-0049/192/1/1
  15. Conroy, C., & Gunn, J. E. 2010, The Propagation of Uncertainties in Stellar Population Synthesis Modeling. III. Model Calibration, Comparison, and Evaluation, ApJ, 712, 833 https://doi.org/10.1088/0004-637X/712/2/833
  16. Contreras, C., Hamuy, M., Phillips, M. M., et al. 2010, The Carnegie Supernova Project: First Photometry Data Release of Low-Redshift Type Ia Supernovae, AJ, 139, 519 https://doi.org/10.1088/0004-6256/139/2/519
  17. Crain, R. A., Schaye, J., Bower, R. G., et al. 2015, The EAGLE Simulations of Galaxy Formation: Calibration of Subgrid Physics and Model Variations, MNRAS, 450, 1937 https://doi.org/10.1093/mnras/stv725
  18. D'Andrea, C. B., Gupta, R. R., Sako, M., et al. 2011, Spectroscopic Properties of Star-forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample, ApJ, 743, 172 https://doi.org/10.1088/0004-637X/743/2/172
  19. Drell, P. S., Loredo, T. J., & Wasserman, I. 2000, Type Ia Supernovae, Evolution, and the Cosmological Constant, ApJ, 530, 593 https://doi.org/10.1086/308393
  20. Driver, S. P., Andrews, S. K., da Cunha, E., et al. 2018, GAMA/G10-COSMOS/3D-HST: the 0 < z < 5 Cosmic Star Formation History, Stellar-Mass, and Dust-Mass Densities, MNRAS, 475, 2891 https://doi.org/10.1093/mnras/stx2728
  21. Faber, S. M., Worthey, G., & Gonzales, J. J. 1992, Absorption-Line Spectra of Elliptical Galaxies and Their Relation to Elliptical Formation, The Stellar Populations of Galaxies, 149, 255
  22. Filippenko, A. V. 1989, Type Ia Supernovae in Elliptical and Spiral Galaxies - Possible Differences in Photometric Homogeneity, PASP, 101, 588 https://doi.org/10.1086/132472
  23. Fioc, M., & Rocca-Volmerange, B. 1997, PEGASE: a UV to NIR Spectral Evolution Model of Galaxies. Application to the Calibration of Bright Galaxy Counts, A&A, 326, 950
  24. Flaugher, B., Diehl, H. T., Honscheid, K., et al. 2015, The Dark Energy Camera, AJ, 150, 150 https://doi.org/10.1088/0004-6256/150/5/150
  25. Foley, R. J., Filippenko, A. V., Aguilera, C., et al. 2008, Constraining Cosmic Evolution of Type Ia Supernovae, ApJ, 684, 68 https://doi.org/10.1086/589612
  26. Foley, R. J., Scolnic, D., Rest, A., et al. 2018, The Foundation Supernova Survey: Motivation, Design, Implementation, and First Data Release, MNRAS, 475, 193 https://doi.org/10.1093/mnras/stx3136
  27. Gallagher, J. S., Garnavich, P. M., Berlind, P., et al. 2005, Chemistry and Star Formation in the Host Galaxies of Type Ia Supernovae, ApJ, 634, 210 https://doi.org/10.1086/491664
  28. Gallagher, J. S., Garnavich, P. M., Caldwell, N., et al. 2008, Supernovae in Early-Type Galaxies: Directly Connecting Age and Metallicity with Type Ia Luminosity, ApJ, 685, 752 https://doi.org/10.1086/590659
  29. Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M., & Tremonti, C. A. 2005, The Ages and Metallicities of Galaxies in the Local Universe, MNRAS, 362, 41 https://doi.org/10.1111/j.1365-2966.2005.09321.x
  30. Graham, M. J., Kulkarni, S. R., Bellm, E. C., et al. 2019, The Zwicky Transient Facility: Science Objectives, arXiv:1902.01945
  31. Graves, G. J., Faber, S. M., Schiavon, R. P., & Yan, R. 2007, Ages and Abundances of Red Sequence Galaxies as a Function of LINER Emission-Line Strength, ApJ, 671, 243 https://doi.org/10.1086/522325
  32. Graves, G. J., Faber, S. M., & Schiavon, R. P. 2009, Dissecting the Red Sequence. II. Star Formation Histories of Early-Type Galaxies Throughout the Fundamental Plane, ApJ, 698, 1590 https://doi.org/10.1088/0004-637X/698/2/1590
  33. Gupta, R. R., D'Andrea, C. B., Sako, M., et al. 2011, Improved Constraints on Type Ia Supernova Host Galaxy Properties Using Multi-Wavelength Photometry and Their Correlations with Supernova Properties, ApJ, 740, 92 https://doi.org/10.1088/0004-637X/740/2/92
  34. Guy, J., Astier, P., Baumont, S., et al. 2007, SALT2: Using Distant Supernovae to Improve the Use of Type Ia Supernovae as Distance Indicators, A&A, 466, 11 https://doi.org/10.1051/0004-6361:20066930
  35. Guy, J., Sullivan, M., Conley, A., et al. 2010, The Supernova Legacy Survey 3-Year Sample: Type Ia Supernovae Photometric Distances and Cosmological Constraints, A&A, 523, A7 https://doi.org/10.1051/0004-6361/201014468
  36. Hamuy, M., Phillips, M. M., Maza, J., et al. 1995, A Hubble Diagram of Distant Type IA Supernovae, AJ, 109, 1 https://doi.org/10.1086/117251
  37. Hamuy, M., Phillips, M. M., Suntzeff, N. B., et al. 1996a, The Absolute Luminosities of the Calan/Tololo Type IA Supernovae, AJ, 112, 2391 https://doi.org/10.1086/118190
  38. Hamuy, M., Phillips, M. M., Suntzeff, N. B., et al. 1996b, BVRI Light Curves for 29 Type Ia Supernovae, AJ, 112, 2408 https://doi.org/10.1086/118192
  39. Hamuy, M., Trager, S. C., Pinto, P. A., et al. 2000, A Search for Environmental Effects on Type Ia Supernovae, AJ, 120, 1479 https://doi.org/10.1086/301527
  40. Han, D.-H., Park, C., Choi, Y.-Y., & Park, M.-G. 2010, The Properties of Type Ia Supernova Host Galaxies from the Sloan Digital Sky Survey, ApJ, 724, 502 https://doi.org/10.1088/0004-637X/724/1/502
  41. Hicken, M., Challis, P., Jha, S., et al. 2009a, CfA3: 185 Type Ia Supernova Light Curves from the CfA, ApJ, 700, 331 https://doi.org/10.1088/0004-637X/700/1/331
  42. Hicken, M., Wood-Vasey, W. M., Blondin, S., et al. 2009b, Improved Dark Energy Constraints from ${\sim}100$ New CfA Supernova Type Ia Light Curves, ApJ, 700, 1097 https://doi.org/10.1088/0004-637X/700/2/1097
  43. Hicken, M., Challis, P., Kirshner, R. P., et al. 2012, CfA4: Light Curves for 94 Type Ia Supernovae, ApJS, 200, 12 https://doi.org/10.1088/0067-0049/200/2/12
  44. Hoflich, P., Wheeler, J. C., & Thielemann, F. K. 1998, Type Ia Supernovae: Influence of the Initial Composition on the Nucleosynthesis, Light Curves, and Spectra and Consequences for the Determination of ${\Omega}_M$ and ${\Lambda}$, ApJ, 495, 617 https://doi.org/10.1086/305327
  45. Hopkins, P. F., Somerville, R. S., Cox, T. J., et al. 2009, The Effects of Gas on Morphological Transformation in Mergers: Implications for Bulge and Disc Demographics, MNRAS, 397, 802 https://doi.org/10.1111/j.1365-2966.2009.14983.x
  46. Howell, D. A., Sullivan, M., Brown, E. F., et al. 2009, The Effect of Progenitor Age and Metallicity on Luminosity and $^{56}Ni$ Yield in Type Ia Supernovae, ApJ, 691, 661 https://doi.org/10.1088/0004-637X/691/1/661
  47. Jha, S., Kirshner, R. P., Challis, P., et al. 2006, UBVRI Light Curves of 44 Type Ia Supernovae, AJ, 131, 527 https://doi.org/10.1086/497989
  48. Jha, S., Riess, A. G., & Kirshner, R. P. 2007, Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2, ApJ, 659, 122 https://doi.org/10.1086/512054
  49. Johansson, J., Thomas, D., Pforr, J., et al. 2013, SN Ia Host Galaxy Properties from Sloan Digital Sky Survey-II Spectroscopy, MNRAS, 435, 1680 https://doi.org/10.1093/mnras/stt1408
  50. Jones, D. O., Riess, A. G., & Scolnic, D. M. 2015, ApJ, Reconsidering the Effects of Local Star Formation on Type Ia Supernova Cosmology, 812, 31 https://doi.org/10.1088/0004-637X/812/1/31
  51. Jones, D. O., Scolnic, D. M., Riess, A. G., et al. 2018a, Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters, ApJ, 857, 51 https://doi.org/10.3847/1538-4357/aab6b1
  52. Jones, D. O., Riess, A. G., Scolnic, D. M., et al. 2018b, Should Type Ia Supernova Distances Be Corrected for Their Local Environments?, ApJ, 867, 108 https://doi.org/10.3847/1538-4357/aae2b9
  53. Jonsson, J., Sullivan, M., Hook, I., et al. 2010, Constraining Dark Matter Halo Properties Using Lensed Supernova Legacy Survey Supernovae, MNRAS, 405, 535
  54. Kang, Y., Kim, Y.-L., Lim, D., Chung, C., & Lee, Y.-W. 2016, Early-Type Host Galaxies of Type Ia Supernovae. I. Evidence for Downsizing, ApJS, 223, 7 https://doi.org/10.3847/0067-0049/223/1/7
  55. Kasen, D., Ropke, F. K., & Woosley, S. E. 2009, The Diversity of Type Ia Supernovae from Broken Symmetries, Nature, 460, 869 https://doi.org/10.1038/nature08256
  56. Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003, The Dependence of Star Formation History and Internal Structure on Stellar Mass for $10^5$ Low-Redshift Galaxies, MNRAS, 341, 54 https://doi.org/10.1046/j.1365-8711.2003.06292.x
  57. Kelly, P. L., Hicken, M., Burke, D. L., Mandel, K. S., & Kirshner, R. P. 2010, Hubble Residuals of Nearby Type Ia Supernovae are Correlated with Host Galaxy Masses, ApJ, 715, 743 https://doi.org/10.1088/0004-637X/715/2/743
  58. Kelly, P. L., Filippenko, A. V., Burke, D. L., et al. 2015, Distances with <4% Precision from Type Ia Supernovae in Young Star-Forming Environments, Science, 347, 1459 https://doi.org/10.1126/science.1261475
  59. Kessler, R., Becker, A. C., Cinabro, D., et al. 2009a, First-Year Sloan Digital Sky Survey-II Supernova Results: Hubble Diagram and Cosmological Parameters, ApJS, 185, 32 https://doi.org/10.1088/0067-0049/185/1/32
  60. Kessler, R., Bernstein, J. P., Cinabro, D., et al. 2009b, SNANA: A Public Software Package for Supernova Analysis, PASP, 121, 1028 https://doi.org/10.1086/605984
  61. Kessler, R., & Scolnic, D. 2017, Correcting Type Ia Supernova Distances for Selection Biases and Contamination in Photometrically Identified Samples, ApJ, 836, 56 https://doi.org/10.3847/1538-4357/836/1/56
  62. Kim, S.-L., Lee, C.-U., Park, B.-G., et al. 2016, KMTNet: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories, JKAS, 49, 37
  63. Kim, Y.-L., Kang, Y., & Lee, Y.-W. 2015, Yonsei Nearby Supernova Evolution Investigation (YONSEI) Supernova Catalogue, PKAS, 30, 485
  64. Kim, Y.-L., Smith, M., Sullivan, M., & Lee, Y.-W. 2018, Environmental Dependence of Type Ia Supernova Luminosities from a Sample without a Local-Global Difference in Host Star Formation, ApJ, 854, 24 https://doi.org/10.3847/1538-4357/aaa127
  65. Kuntschner, H., Emsellem, E., Bacon, R., et al. 2006, The SAURON Project - VI. Line Strength Maps of 48 Elliptical and Lenticular Galaxies, MNRAS, 369, 497 https://doi.org/10.1111/j.1365-2966.2006.10153.x
  66. Lampeitl, H., Smith, M., Nichol, R. C., et al. 2010, The Effect of Host Galaxies on Type Ia Supernovae in the SDSS-II Supernova Survey, ApJ, 722, 566 https://doi.org/10.1088/0004-637X/722/1/566
  67. Le Borgne, D., & Rocca-Volmerange, B. 2002, Photometric Redshifts from Evolutionary Synthesis with P EGASE: The Code Z-PEG and the z = 0 Age Constraint, A&A, 386, 446 https://doi.org/10.1051/0004-6361:20020259
  68. Le Borgne, D., Rocca-Volmerange, B., Prugniel, P., et al. 2004, Evolutionary Synthesis of Galaxies at High Spectral Resolution with the Code PEGASE-HR. Metallicity and Age Tracers, A&A, 425, 881 https://doi.org/10.1051/0004-6361:200400044
  69. Linden, S., Virey, J.-M., & Tilquin, A. 2009, Cosmological Parameter Extraction and Biases from Type Ia Supernova Magnitude Evolution, A&A, 506, 1095 https://doi.org/10.1051/0004-6361/200912811
  70. Madau, P., & Dickinson, M. 2014, Cosmic Star-Formation History, ARA&A, 52, 415 https://doi.org/10.1146/annurev-astro-081811-125615
  71. Makarov, D., Prugniel, P., Terekhova, N., Courtois, H., & Vauglin, I. 2014, HyperLEDA. III. The Catalogue of Extragalactic Distances, A&A, 570, A13 https://doi.org/10.1051/0004-6361/201423496
  72. Malmquist, K. G. 1936, The Effect of an Absorption of Light in Space upon Some Relations in Stellar Statistics, Stockholmes Obs. Medd., 26
  73. Martin-Navarro, I., & Mezcua, M. 2018, Exploring the Limits of AGN Feedback: Black Holes and the Star Formation Histories of Low-Mass Galaxies, ApJL, 855, L20 https://doi.org/10.3847/2041-8213/aab103
  74. Meyers, J., Aldering, G., Barbary, K., et al. 2012, The Hubble Space Telescope Cluster Supernova Survey. III. Correlated Properties of Type Ia Supernovae and Their Hosts at 0.9 < z < 1.46, ApJ, 750, 1 https://doi.org/10.1088/0004-637X/750/1/1
  75. Miknaitis, G., Pignata, G., Rest, A., et al. 2007, The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry, ApJ, 666, 674 https://doi.org/10.1086/519986
  76. Neill, J. D., Sullivan, M., Howell, D. A., et al. 2009, ApJ, The Local Hosts of Type Ia Supernovae, 707, 1449 https://doi.org/10.1088/0004-637X/707/2/1449
  77. Pan, Y.-C., Sullivan, M., Maguire, K., et al. 2014, The Host Galaxies of Type Ia Supernovae Discovered by the Palomar Transient Factory, MNRAS, 438, 1391 https://doi.org/10.1093/mnras/stt2287
  78. Park, C., & Choi, Y.-Y. 2005, Morphology Segregation of Galaxies in Color-Color Gradient Space, ApJL, 635, L29 https://doi.org/10.1086/499243
  79. Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, Measurements of ${\Omega}$ and ${\Lambda}$ from 42 High-Redshift Supernovae, ApJ, 517, 565 https://doi.org/10.1086/307221
  80. Phillips, M. M. 1993, The Absolute Magnitudes of Type Ia Supernovae, ApJL, 413, L105 https://doi.org/10.1086/186970
  81. Rest, A., Scolnic, D., Foley, R. J., et al. 2014, Cosmological Constraints from Measurements of Type Ia Supernovae Discovered during the First 1.5 yr of the Pan-STARRS1 Survey, ApJ, 795, 44 https://doi.org/10.1088/0004-637X/795/1/44
  82. Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, AJ, 116, 1009 https://doi.org/10.1086/300499
  83. Riess, A. G., Kirshner, R. P., Schmidt, B. P., et al. 1999a, BVRI Light Curves for 22 Type Ia Supernovae, AJ, 117, 707 https://doi.org/10.1086/300738
  84. Riess, A. G., Filippenko, A. V., Li, W., & Schmidt, B. P. 1999b, Is There an Indication of Evolution of Type Ia Supernovae from Their Rise Times?, AJ, 118, 2668 https://doi.org/10.1086/301144
  85. Riess, A. G., Strolger, L.-G., Tonry, J., et al. 2004, Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution, ApJ, 607, 665 https://doi.org/10.1086/383612
  86. Riess, A. G., Strolger, L.-G., Casertano, S., et al. 2007, New Hubble Space Telescope Discoveries of Type Ia Supernovae at $z{\geq}1$: Narrowing Constraints on the Early Behavior of Dark Energy, ApJ, 659, 98 https://doi.org/10.1086/510378
  87. Rigault, M., Copin, Y., Aldering, G., et al. 2013, Evidence of Environmental Dependencies of Type Ia Supernovae from the Nearby Supernova Factory Indicated by Local H, A&A, 560, A66 https://doi.org/10.1051/0004-6361/201322104
  88. Rigault, M., Aldering, G., Kowalski, M., et al. 2015, Confirmation of a Star Formation Bias in Type Ia Supernova Distances and Its Effect on the Measurement of the Hubble Constant, ApJ, 802, 20 https://doi.org/10.1088/0004-637X/802/1/20
  89. Rigault, M., Brinnel, V., Aldering, G., et al. 2018, Strong Dependence of Type Ia Supernova Standardization on the Local Specific Star Formation Rate, arXiv:1806.03849
  90. Roman, M., Hardin, D., Betoule, M., et al. 2018, Dependence of Type Ia Supernova Luminosities on Their Local Environment, A&A, 615, A68 https://doi.org/10.1051/0004-6361/201731425
  91. Sako, M., Bassett, B., Becker, A. C., et al. 2018, The Data Release of the Sloan Digital Sky Survey-II Supernova Survey, PASP, 130, 064002 https://doi.org/10.1088/1538-3873/aab4e0
  92. Schmidt, B. P., Suntzeff, N. B., Phillips, M. M., et al. 1998, The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae, ApJ, 507, 46 https://doi.org/10.1086/306308
  93. Scolnic, D., Rest, A., Riess, A., et al. 2014, Systematic Uncertainties Associated with the Cosmological Analysis of the First Pan-STARRS1 Type Ia Supernova Sample, ApJ, 795, 45 https://doi.org/10.1088/0004-637X/795/1/45
  94. Scolnic, D., & Kessler, R. 2016, Measuring Type Ia Supernova Populations of Stretch and Color and Predicting Distance Biases, ApJL, 822, L35 https://doi.org/10.3847/2041-8205/822/2/L35
  95. Scolnic, D. M., Jones, D. O., Rest, A., et al. 2018, The Complete Light-Curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, ApJ, 859, 101 https://doi.org/10.3847/1538-4357/aab9bb
  96. Smith, M., Nichol, R. C., Dilday, B., et al. 2012, The SDSS-II Supernova Survey: Parameterizing the Type Ia Supernova Rate as a Function of Host Galaxy Properties, ApJ, 755, 61 https://doi.org/10.1088/0004-637X/755/1/61
  97. Stritzinger, M. D., Phillips, M. M., Boldt, L. N., et al. 2011, The Carnegie Supernova Project: Second Photometry Data Release of Low-Redshift Type Ia Supernovae, AJ, 142, 156 https://doi.org/10.1088/0004-6256/142/5/156
  98. Strolger, L.-G., Riess, A. G., Dahlen, T., et al. 2004, The Hubble Higher z Supernova Search: Supernovae to $z{\sim}1.6$ and Constraints on Type Ia Progenitor Models, ApJ, 613, 200 https://doi.org/10.1086/422901
  99. Sullivan, M., Le Borgne, D., Pritchet, C. J., et al. 2006, Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies, ApJ, 648, 868 https://doi.org/10.1086/506137
  100. Sullivan, M., Ellis, R. S., Howell, D. A., et al. 2009, The Mean Type Ia Supernova Spectrum Over the Past Nine Gigayears, ApJL, 693, L76 https://doi.org/10.1088/0004-637X/693/2/L76
  101. Sullivan, M., Conley, A., Howell, D. A., et al. 2010, The Dependence of Type Ia Supernovae Luminosities on Their Host Galaxies, MNRAS, 406, 782
  102. Sullivan, M., Guy, J., Conley, A., et al. 2011, SNLS3: Constraints on Dark Energy Combining the Supernova Legacy Survey Three-Year Data with Other Probes, ApJ, 737, 102 https://doi.org/10.1088/0004-637X/737/2/102
  103. Suzuki, N., Rubin, D., Lidman, C., et al. 2012, The Hubble Space Telescope Cluster Supernova Survey. V. Improving the Dark-Energy Constraints above z > 1 and Building an Early-Type-Hosted Supernova Sample, ApJ, 746, 85 https://doi.org/10.1088/0004-637X/746/1/85
  104. Taylor, J. 1997, Introduction to Error Analysis (2nd ed.: Mill Valley, CA: University Science Books)
  105. Taylor, P., Federrath, C., & Kobayashi, C. 2017, Star Formation in Simulated Galaxies: Understanding the Transition to Quiescence at $3{\times}10^{10}M_{\odot}$, MNRAS, 469, 4249 https://doi.org/10.1093/mnras/stx1128
  106. Thomas, D., Maraston, C., Bender, R., & Mendes de Oliveira, C. 2005, The Epochs of Early-Type Galaxy Formation as a Function of Environment, ApJ, 621, 673 https://doi.org/10.1086/426932
  107. Timmes, F. X., Brown, E. F., & Truran, J. W. 2003, On Variations in the Peak Luminosity of Type Ia Supernovae, ApJL, 590, L83 https://doi.org/10.1086/376721
  108. Trager, S. C., Faber, S. M., Worthey, G., & Gonzalez, J. J. 2000, The Stellar Population Histories of Local Early-Type Galaxies. I. Population Parameters, AJ, 119, 1645 https://doi.org/10.1086/301299
  109. Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. 2004, The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-Forming Galaxies in the Sloan Digital Sky Survey, ApJ, 613, 898 https://doi.org/10.1086/423264
  110. Tripp, R. 1998, A Two-Parameter Luminosity Correction for Type IA Supernovae, A&A, 331, 815
  111. Tutusaus, I., Lamine, B., Dupays, A., & Blanchard, A. 2017, Is Cosmic Acceleration Proven by Local Cosmological Probes?, A&A, 602, A73 https://doi.org/10.1051/0004-6361/201630289
  112. Tutusaus, I., Lamine, B., & Blanchard, A. 2018, Model-Independent Cosmic Acceleration and Type Ia Supernovae Intrinsic Luminosity Redshift Dependence, arXiv:1803.06197 https://doi.org/10.1051/0004-6361/201833032
  113. Uddin, S. A., Mould, J., Lidman, C., Ruhlmann-Kleider, V., & Zhang, B. R. 2017, The Influence of Host Galaxies in Type Ia Supernova Cosmology, ApJ, 848, 56 https://doi.org/10.3847/1538-4357/aa8df7
  114. Walcher, J., Groves, B., Budavari, T., & Dale, D. 2011, Fitting the Integrated Spectral Energy Distributions of Galaxies, Ap&SS, 331, 1 https://doi.org/10.1007/s10509-010-0458-z
  115. Wolf, R. C., D'Andrea, C. B., Gupta, R. R., et al. 2016, SDSS-II Supernova Survey: An Analysis of the Largest Sample of Type Ia Supernovae and Correlations with Host-Galaxy Spectral Properties, ApJ, 821, 115 https://doi.org/10.3847/0004-637X/821/2/115
  116. Wood-Vasey, W. M., Miknaitis, G., Stubbs, C. W., et al. 2007, Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey, ApJ, 666, 694 https://doi.org/10.1086/518642
  117. Worthey, G., Faber, S. M., Gonzalez, J. J., & Burstein, D. 1994, Old Stellar Populations. 5: Absorption Feature Indices for the Complete LICK/IDS Sample of Stars, ApJS, 94, 687 https://doi.org/10.1086/192087
  118. Worthey, G. 1998, Abundance Ratio Trends and Nucleosynthesis in Elliptical Galaxies and Spheroids, PASP, 110, 888 https://doi.org/10.1086/316203