DOI QR코드

DOI QR Code

Toxicological Evaluation of Saposhnikoviae Radix Water Extract and its Antihyperuricemic Potential

  • Kim, Chang Won (Department of Oriental Medicine and Biotechnology, Kyung Hee University) ;
  • Sung, Jae Hyuck (Korea Conformity Laboratories) ;
  • Kwon, Jeong Eun (Department of Oriental Medicine and Biotechnology, Kyung Hee University) ;
  • Ryu, Hyeon Yeol (Korea Conformity Laboratories) ;
  • Song, Kyung Seuk (Korea Conformity Laboratories) ;
  • Lee, Jin Kyu (Korea Conformity Laboratories) ;
  • Lee, Sung Ryul (Department of Integrated Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University) ;
  • Kang, Se Chan (Department of Oriental Medicine and Biotechnology, Kyung Hee University)
  • Received : 2018.11.06
  • Accepted : 2019.03.05
  • Published : 2019.10.15

Abstract

Although the dried root of Saposhnikovia divaricata (Turcz.) Schischk. (Umbelliferae) is a popular medicinal plant in East Asia, there has been no systemic toxicological evaluation of a water extract of Saposhnikoviae Radix (SRE). In this experiment, an oral acute and 13-week subchronic toxicological evaluations of SRE (500-5,000 mg/kg body weight) were performed in both sexes of Crl:CD(SD) rats. Based on the results from mortality, clinical signs, effects on body weight and organ weight, clinical biochemistry, hematology, urinalysis, and histopathology, significant acute, 4-week repeated dose range finding (DRF) and 13-week subchronic toxicity of SRE was not observed in either sex of rats; thus, the no observed adverse effect level (NOAEL) was 5,000 mg (kg/day). To identify anti-hyperuricemia potential of SRE, the suppressive effect of SRE was determined in mice challenged with potassium oxonate (PO; 250 mg/kg) via intraperitoneal injection for 8 days (each group; n = 7). SRE supplementation suppressed the uric acid level in urine through significant xanthine oxidase (XO) inhibitory activity. Kidney dysfunctions were observed in PO-challenged mice as evidenced by an increase in serum creatinine level. Whereas, SRE supplementation suppressed it in a dose-dependent manner. Collectively, SRE was safe up to 5,000 mg (kg/day) based on NOAEL found from acute and 13-week subchronic toxicological evaluations. SRE had anti-hyperuricemia effect and lowered the excessive level of uric acid, a potential factor for gout and kidney failure.

Keywords

References

  1. WHO (2013) WHO traditional medicine strategy: 2014-2023.
  2. Fan, T.P., Deal, G., Koo, H.L., Rees, D., Sun, H., Chen, S., Dou, J.H., Makarov, V.G., Pozharitskaya, O.N., Shikov, A.N., Kim, Y.S., Huang, Y.T., Chang, Y.S., Jia, W., Dias, A., Wong, V.C. and Chan, K. (2012) Future development of global regulations of Chinese herbal products. J. Ethnopharmacol., 140, 568-586. https://doi.org/10.1016/j.jep.2012.02.029
  3. Kreiner, J., Pang, E., Lenon, G.B. and Yang, A.W.H. (2017) Saposhnikoviae divaricata: a phytochemical, pharmacological, and pharmacokinetic review. Chin. J. Nat. Med., 15, 255-264.
  4. Liu, R., Wu, S. and Sun, A. (2008) Separation and purification of four chromones from radix saposhnikoviae by high-speed counter-current chromatography. Phytochem. Anal., 19, 206-211. https://doi.org/10.1002/pca.984
  5. Wang, C.N., Shiao, Y.J., Kuo, Y.H., Chen, C.C. and Lin, Y.L. (2000) Inducible nitric oxide synthase inhibitors from Saposhnikovia divaricata and Panax quinquefolium. Planta Med., 66, 644-647. https://doi.org/10.1055/s-2000-8624
  6. Okuyama, E., Hasegawa, T., Matsushita, T., Fujimoto, H., Ishibashi, M. and Yamazaki, M. (2001) Analgesic components of saposhnikovia root (Saposhnikovia divaricata). Chem. Pharm. Bull., 49, 154-160. https://doi.org/10.1248/cpb.49.154
  7. Tai, J. and Cheung, S. (2007) Anti-proliferative and antioxidant activities of Saposhnikovia divaricata. Oncol. Rep., 18, 227-234.
  8. Liao, H., Li, Q., Liu, R., Liu, J. and Bi, K. (2014) Fingerprint analysis and multi-ingredient determination using a single reference standard for saposhnikoviae radix. Anal. Sci., 30, 1157-1163. https://doi.org/10.2116/analsci.30.1157
  9. Kim, M.K., Yang, D.H., Jung, M., Jung, E.H., Eom, H.Y., Suh, J.H., Min, J.W., Kim, U., Min, H., Kim, J. and Han, S.B. (2011) Simultaneous determination of chromones and coumarins in Radix Saposhnikoviae by high performance liquid chromatography with diode array and tandem mass detectors. J. Chromatogr. A, 1218, 6319-6330. https://doi.org/10.1016/j.chroma.2011.06.103
  10. Rim, H.K., Cho, W., Sung, S.H. and Lee, K.T. (2012) Nodakenin suppresses lipopolysaccharide-induced inflammatory responses in macrophage cells by inhibiting tumor necrosis factor receptor-associated factor 6 and nuclear factor-kappaB pathways and protects mice from lethal endotoxin shock. J. Pharmacol. Exp. Ther., 342, 654-664. https://doi.org/10.1124/jpet.112.194613
  11. Jameel, E., Umar, T., Kumar, J. and Hoda, N. (2016) Coumarin: a privileged scaffold for the design and development of antineurodegenerative agents. Chem. Biol. Drug Des., 87, 21-38. https://doi.org/10.1111/cbdd.12629
  12. Lee, H., Lee, J.K., Ha, H., Lee, M.Y., Seo, C.S. and Shin, H.K. (2012) Angelicae dahuricae radix inhibits dust mite extract-induced atopic dermatitis-like skin lesions in NC/Nga mice. Evid. Based Complement. Alternat. Med., 2012, 743075.
  13. Kim, S.J., Ko, S.M., Choi, E.J., Ham, S.H., Kwon, Y.D., Lee, Y.B. and Cho, H.Y. (2018) Simultaneous determination of decursin, decursinol angelate, nodakenin, and decursinol of angelica gigas nakai in human plasma by UHPLC-MS/MS: application to pharmacokinetic study. Molecules, 23.
  14. Calil Brondani, J., Reginato, F.Z., da Silva Brum, E., de Souza Vencato, M., Lima Lhamas, C., Viana Silva, C., da Rocha, M.I., de Freitas Bauermann, L. and Manfron, M.P. (2017) Evaluation of acute and subacute toxicity of hydroethanolic extract of Dolichandra unguis-cati L. leaves in rats. J. Ethnopharmacol., 202, 147-153. https://doi.org/10.1016/j.jep.2017.03.011
  15. Park, M.-Y., Choi, H.-Y., Kim, J.-D., Lee, H.-S. and Ku, S.-K. (2010) 28 Days repeated oral dose toxicity test of aqueous extracts of mahwangyounpae-tang, a polyherbal formula. Food Chem. Toxicol., 48, 2477-2482. https://doi.org/10.1016/j.fct.2010.06.017
  16. Wills, R.B., Bone, K. and Morgan, M. (2000) Herbal products: active constituents, modes of action and quality control. Nutr. Res. Rev., 13, 47-77. https://doi.org/10.1079/095442200108729007
  17. Kuo, C.F., Grainge, M.J., Mallen, C., Zhang, W. and Doherty, M. (2015) Rising burden of gout in the UK but continuing suboptimal management: a nationwide population study. Ann. Rheum. Dis., 74, 661-667. https://doi.org/10.1136/annrheumdis-2013-204463
  18. Sarvaiya, V.N., Sadariya, K.A., Pancha, P.G., Thaker, A.M., Patel, A.C. and Prajapati, A.S. (2015) Evaluation of antigout activity of Phyllanthus emblica fruit extracts on potassium oxonate-induced gout rat model. Vet. World, 8, 1230-1236. https://doi.org/10.14202/vetworld.2015.1230-1236
  19. Stavric, B. and Nera, E.A. (1978) Use of the uricase-inhibited rat as an animal model in toxicology. Clin. Toxicol., 13, 47-74. https://doi.org/10.3109/15563657808988228
  20. Hall, B.G. (2013) Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol., 30, 1229-1235. https://doi.org/10.1093/molbev/mst012
  21. Slabbinck, B., Dawyndt, P., Martens, M., De Vos, P. and De Baets, B. (2008) TaxonGap: a visualization tool for intra- and inter-species variation among individual biomarkers. Bioinformatics, 24, 866-867. https://doi.org/10.1093/bioinformatics/btn031
  22. Seo, U.M., Zhao, B.T., Kim, Y.H., Kang, J.S., Son, J.K. and Woo, M.H. (2016) Simultaneous analysis of seven marker compounds from Saposhnikoviae Radix, Glehniae Radix and Peucedani Japonici Radix by HPLC/PDA. Arch. Pharm. Res., 39, 695-704. https://doi.org/10.1007/s12272-016-0740-x
  23. Seo, C.-S. and Shin, H.-K. (2015) Simultaneous determination of nine marker compounds in the traditional Korean medicine, Dangguisu san by high performance liquid chromatography. Pharmacogn. Mag., 11, 555-561. https://doi.org/10.4103/0973-1296.160457
  24. Mumford, S.L., Dasharathy, S.S., Pollack, A.Z., Perkins, N.J., Mattison, D.R., Cole, S.R., Wactawski-Wende, J. and Schisterman, E.F. (2013) Serum uric acid in relation to endogenous reproductive hormones during the menstrual cycle: findings from the BioCycle study. Hum. Reprod., 28, 1853-1862. https://doi.org/10.1093/humrep/det085
  25. Nguyen, M.T., Awale, S., Tezuka, Y., Tran, Q.L., Watanabe, H. and Kadota, S. (2004) Xanthine oxidase inhibitory activity of Vietnamese medicinal plants. Biol. Pharm. Bull., 27, 1414-1421. https://doi.org/10.1248/bpb.27.1414
  26. Thakur, L., Ghodasra, U., Patel, N. and Dabhi, M. (2011) Novel approaches for stability improvement in natural medicines. Pharmacogn. Rev., 5, 48-54. https://doi.org/10.4103/0973-7847.79099
  27. Bove, M., Cicero, A.F., Veronesi, M. and Borghi, C. (2017) An evidence-based review on urate-lowering treatments: implications for optimal treatment of chronic hyperuricemia. Vasc. Health Risk Manag., 13, 23-28. https://doi.org/10.2147/VHRM.S115080
  28. Wang, M.X., Liu, Y.L., Yang, Y., Zhang, D.M. and Kong, L.D. (2015) Nuciferine restores potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Eur. J. Pharmacol., 747, 59-70. https://doi.org/10.1016/j.ejphar.2014.11.035
  29. Chen, G., Tan, M.L., Li, K.K., Leung, P.C. and Ko, C.H. (2015) Green tea polyphenols decreases uric acid level through xanthine oxidase and renal urate transporters in hyperuricemic mice. J. Ethnopharmacol., 175, 14-20. https://doi.org/10.1016/j.jep.2015.08.043
  30. Dolati, K., Rakhshandeh, H., Golestani, M., Forouzanfar, F., Sadeghnia, R. and Sadeghnia, H.R. (2018) Inhibitory effects of apium graveolens on xanthine oxidase activity and serum uric acid levels in hyperuricemic mice. Prev. Nutr. Food Sci., 23, 127-133. https://doi.org/10.3746/pnf.2018.23.2.127
  31. Tung, Y.T., Lin, L.C., Liu, Y.L., Ho, S.T., Lin, C.Y., Chuang, H.L., Chiu, C.C., Huang, C.C. and Wu, J.H. (2015) Antioxidative phytochemicals from Rhododendron oldhamii Maxim. leaf extracts reduce serum uric acid levels in potassium oxonate-induced hyperuricemic mice. BMC Complement. Altern. Med., 15, 423. https://doi.org/10.1186/s12906-015-0950-7
  32. Margina, D., Ilie, M., Gradinaru, D., Androutsopoulos, V.P., Kouretas, D. and Tsatsakis, A.M. (2015) Natural products-friends or foes? Toxicol. Lett., 236, 154-167. https://doi.org/10.1016/j.toxlet.2015.05.009
  33. Kuo, C.F., Grainge, M.J., Zhang, W. and Doherty, M. (2015) Global epidemiology of gout: prevalence, incidence and risk factors. Nat. Rev. Rheumatol., 11, 649-662. https://doi.org/10.1038/nrrheum.2015.91
  34. Igel, T.F., Krasnokutsky, S. and Pillinger, M.H. (2017) Recent advances in understanding and managing gout. F1000Res, 6, 247. https://doi.org/10.12688/f1000research.9402.1
  35. Schlesinger, N. (2017) The safety of treatment options available for gout. Expert Opin. Drug Saf., 16, 429-436. https://doi.org/10.1080/14740338.2017.1284199
  36. Ohno, I. (2011) Relationship between hyperuricemia and chronic kidney disease. Nucleosides Nucleotides Nucleic Acids, 30, 1039-1044. https://doi.org/10.1080/15257770.2011.611484