참고문헌
- Haraguchi, H. (2017) Metallomics: the history over the last decade and a future outlook. Metallomics, 9, 1001-1013. https://doi.org/10.1039/C7MT00023E
- Hara, T., Takeda, T.A., Takagishi, T., Fukue, K., Kambe, T. and Fukada, T. (2017) Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J. Physiol. Sci., 67, 283-301. https://doi.org/10.1007/s12576-017-0521-4
- Klaassen, C.D., Liu, J., and Diwan, B.A. (2009) Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharmacol., 238, 215-220. https://doi.org/10.1016/j.taap.2009.03.026
- Sabolic, I., Breljak, D., Skarica, M. and Herak-Kramberger, C.M. (2010) Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals, 23, 897-926. https://doi.org/10.1007/s10534-010-9351-z
- Wolff, N.A., Abouhamed, M., Verroust, P.J. and Thevenod, F. (2006) Megalin-dependent internalization of cadmium-metallothionein and cytotoxicity in cultured renal proximal tubule cells. J. Pharmacol. Exp. Ther., 318, 782-791. https://doi.org/10.1124/jpet.106.102574
- Elinder, C.G., Lind, B., Kjellstrom, T., Linnman, L. and Friberg, L. (1976) Cadmium in kidney cortex, liver, and pancreas from Swedish autopsies. Estimation of biological half time in kidney cortex, considering calorie intake and smoking habits. Arch. Environ. Health, 31, 292-302. https://doi.org/10.1080/00039896.1976.10667239
- Yanagiya, T., Imura, N., Kondo, Y. and Himeno, S. (1999) Reduced uptake and enhanced release of cadmium in cadmium resistant metallothionein null fibroblasts. Life Sci., 65, PL177-PL182. https://doi.org/10.1016/S0024-3205(99)00393-8
- Yanagiya, T., Imura, N., Enomoto, S., Kondo, Y. and Himeno, S. (2000) Suppression of a high-affinity transport system for manganese in cadmium-resistant metallothionein-null cells. J. Pharmacol. Exp. Ther., 292, 1080-1086.
- Himeno, S., Yanagiya, T. and Fujishiro, H. (2009) The role of zinc transporters in cadmium and manganese transport in mammalian cells. Biochimie, 91, 1218-1222. https://doi.org/10.1016/j.biochi.2009.04.002
- Fujishiro, H., Okugaki, S., Nagao, S., Satoh, M. and Himeno, S. (2006) Characterization of gene expression profiles of metallothionein-null cadmium-resistant cells. J. Health Sci., 52, 292-299. https://doi.org/10.1248/jhs.52.292
- Fujishiro, H., Okugaki, S., Kubota, K., Fujiyama, T., Miyataka, H. and Himeno, S. (2009) The role of ZIP8 down-regulation in cadmium-resistant metallothionein-null cells. J. Appl. Toxicol., 29, 367-373. https://doi.org/10.1002/jat.1419
- Fujishiro, H., Okugaki, S., Yasumitsu, S., Enomoto, S. and Himeno, S. (2009) Involvement of DNA hypermethylation in down-regulation of the zinc transporter ZIP8 in cadmium-resistant metallothionein-null cells. Toxicol. Appl. Pharmacol., 241, 195-201. https://doi.org/10.1016/j.taap.2009.08.015
- Fujishiro, H., Kubota, K., Inoue, D., Inoue, A., Yanagiya, T., Enomoto, S. and Himeno, S. (2011) Cross-resistance of cadmium-resistant cells to manganese is associated with reduced accumulation of both cadmium and manganese. Toxicology, 280, 118-125. https://doi.org/10.1016/j.tox.2010.12.002
- Fujishiro, H., Ohashi, T., Takuma, M. and Himeno, S. (2013) Suppression of ZIP8 expression is a common feature of cadmium-resistant and manganese-resistant RBL-2H3 cells. Metallomics, 5, 437-444. https://doi.org/10.1039/c3mt00003f
- Fujishiro, H., Doi, M., Enomoto, S. and Himeno, S. (2011) High sensitivity of RBL-2H3 cells to cadmium and manganese: an implication of the role of ZIP8. Metallomics, 3, 710-718. https://doi.org/10.1039/c1mt00020a
- Fujishiro, H., Yoshida, M., Nakano, Y. and Himeno, S. (2014) Interleukin-6 enhances manganese accumulation in SH-SY5Y cells: Implications of the up-regulation of ZIP14 and the down-regulation of ZnT10. Metallomics, 6, 944-949. https://doi.org/10.1039/C3MT00362K
- He, L., Wang, B., Hay, E.B. and Nebert, D.W. (2009) Discovery of ZIP transporters that participate in cadmium damage to testis and kidney. Toxicol. Appl. Pharmacol., 238, 250-257. https://doi.org/10.1016/j.taap.2009.02.017
- Gunshin, H., Mackenzie, B., Berger, U.V., Gunshin, Y., Romero, M.F., Boron, W.F., Nussberger, S., Gollan, J.L. and Hediger, M.A. (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 388, 482-488. https://doi.org/10.1038/41343
- Fujishiro, H., Hamao, S., Tanaka, R., Kambe, T. and Himeno, S. (2017) Concentration-dependent roles of DMT1 and ZIP14 in cadmium absorption in Caco-2 cells. J. Toxicol. Sci., 42, 559-567. https://doi.org/10.2131/jts.42.559
- Liuzzi, J.P., Lichten, L.A., Rivera, S., Blanchard, R.K., Aydemir, T.B., Knutson, M.D., Ganz, T. and Cousins, R.J. (2005) Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc. Natl. Acad. Sci. U.S.A., 102, 6843-6848. https://doi.org/10.1073/pnas.0502257102
- Fujishiro, H., Yano, Y., Takada, Y., Tanihara, M. and Himeno, S. (2012) Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells. Metallomics, 4, 700-708. https://doi.org/10.1039/c2mt20024d
- Fujishiro, H. and Himeno, S. (2019) Gene expression profiles of immortalized S1, S2, and S3 cells derived from each segment of mouse kidney proximal tubules. Fundam. Toxicol. Sci., 6, 117-123. https://doi.org/10.2131/fts.6.117
- Fujishiro, H., Hamao, S., Isawa, M. and Himeno, S. (2019) Segment-specific and direction-dependent transport of cadmium and manganese in immortalized S1, S2, and S3 cells derived from mouse kidney proximal tubules. J. Toxicol. Sci., 44, 611-619. https://doi.org/10.2131/jts.44.611
- Himeno, S. and Fujishiro, H. (2019) Roles of metal transporters in cellular cadmium transport in mammals in Cadmium Toxicity New Aspects in Human Disease, Rice Contamination, and Cytotoxicity (Himeno, S. and Aoshima, K. Eds.). Springer, Singapore, pp. 163-178.
- Park, J.H., Hogrebe, M., Fobker, M., Brackmann, R., Fiedler, B., Reunert, J., Rust, S., Tsiakas, K., Santer, R., Gruneberg, M. and Marquardt, T. (2018) SLC39A8 deficiency: Biochemical correction and major clinical improvement by manganese therapy. Genet. Med., 20, 259-268. https://doi.org/10.1038/gim.2017.106
- Park, J.H., Hogrebe, M., Gruneberg, M., Duchesne, I., Von Der Heiden, A.L., Reunert, J., Schlingmann, K.P., Boycott, K.M., Beaulieu, C.L., Mhanni, A.A., Innes, A.M., Hortnagel, K., Biskup, S., Gleixner, E.M., Kurlemann, G., Fiedler, B., Omran, H., Rutsch, F., Wada, Y., Tsiakas, K., Santer, R., Nebert, D.W., Rust, S. and Marquardt, T. (2015) SLC39A8 deficiency: a disorder of manganese transport and glycosylation. Am. J. Hum. Genet., 97, 894-903. https://doi.org/10.1016/j.ajhg.2015.11.003
- Lin, W., Vann, D.R., Doulias, P.T., Wang, T., Landesberg, G., Li, X., Ricciotti, E., Scalia, R., He, M., Hand, N.J. and Rader, D.J. (2017) Hepatic metal ion transporter ZIP8 regulates manganese homeostasis and manganese-dependent enzyme activity. J. Clin. Invest., 127, 2407-2417. https://doi.org/10.1172/JCI90896
- Fujishiro, H. and Himeno, S. (2019) New insights into the roles of ZIP8, a cadmium and manganese transporter, and its relation to human diseases. Biol. Pharm. Bull., 42, 1076-1082. https://doi.org/10.1248/bpb.b18-00637
- Sasaki, A., Yamaji, N., Yokosho, K. and Ma, J.F. (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell, 24, 2155-2167. https://doi.org/10.1105/tpc.112.096925
- Ishikawa, S., Ishimaru, Y., Igura, M., Kuramata, M., Abe, T., Senoura, T., Hase, Y., Arao, T., Nishizawa, N.K. and Nakanishi, H. (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc. Natl. Acad. Sci. U.S.A., 109, 19166-19171. https://doi.org/10.1073/pnas.1211132109
- Yamauchi, H. and Sun, G. (2019) Arsenic Contamination in Asia Biological Effects and Preventive Measures. Springer, Singapore.
-
Zhang, X.W., Yan, X.J., Zhou, Z.R., Yang, F.F., Wu, Z.Y., Sun, H.B., Liang, W.X., Song, A.X., Lallemand-Breitenbach, V., Jeanne, M., Zhang, Q.Y., Yang, H.Y., Huang, Q.H., Zhou, G.B., Tong, J.H., Zhang, Y., Wu, J.H., Hu, H.Y., de The, H., Chen, S.J. and Chen, Z. (2010) Arsenic trioxide controls the fate of the PML-
$RAR{\alpha}$ oncoprotein by directly binding PML. Science, 328, 240-243. https://doi.org/10.1126/science.1183424 - Wysocki, R., Chery, C.C., Wawrzycka, D., Van Hulle, M., Cornelis, R., Thevelein, J.M. and Tamas, M.J. (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol. Microbiol., 40, 1391-1401. https://doi.org/10.1046/j.1365-2958.2001.02485.x
- Liu, Z., Shen, J., Carbrey, J.M., Mukhopadhyay, R., Agre, P. and Rosen, B.P. (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc. Natl. Acad. Sci. U.S.A., 99, 6053-6058. https://doi.org/10.1073/pnas.092131899
- Shinkai, Y., Sumi, D., Toyama, T., Kaji, T. and Kumagai, Y. (2009) Role of aquaporin 9 in cellular accumulation of arsenic and its cytotoxicity in primary mouse hepatocytes. Toxicol. Appl. Pharmacol., 237, 232-236. https://doi.org/10.1016/j.taap.2009.03.014
- Lee, T.C., Ho, I.C., Lu, W.J. and Huang, J.D. (2006) Enhanced expression of multidrug resistance-associated protein 2 and reduced expression of aquaglyceroporin 3 in an arsenic-resistant human cell line. J. Biol. Chem., 281, 18401-18407. https://doi.org/10.1074/jbc.M601266200
- Calatayud, M., Barrios, J.A., Velez, D. and Devesa, V. (2012) In vitro study of transporters involved in intestinal absorption of inorganic arsenic. Chem. Res. Toxicol., 25, 446-453. https://doi.org/10.1021/tx200491f
- Tsukaguchi, H., Shayakul, C., Berger, U.V., Mackenzie, B., Devidas, S., Guggino, W.B., Van Hoek, A.N. and Hediger, M.A. (1998) Molecular characterization of a broad selectivity neutral solute channel. J. Biol. Chem., 273, 24737-24743. https://doi.org/10.1074/jbc.273.38.24737
- Sumi, D., Suzukawa, K. and Himeno, S. (2016) Arsenic trioxide augments all-trans retinoic acid-induced differentiation of HL-60 cells. Life Sci., 149, 42-50. https://doi.org/10.1016/j.lfs.2016.02.054
- Villa-Bellosta, R. and Sorribas, V. (2010) Arsenate transport by sodium/phosphate cotransporter type IIb. Toxicol. Appl. Pharmacol., 247, 36-40. https://doi.org/10.1016/j.taap.2010.05.012
- Meharg, A.A. and Rahman, M. (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ. Sci. Technol., 37, 229-234. https://doi.org/10.1021/es0259842
- Yamamoto, T., Nakamura, A., Iwai, H., Ishii, T., Ma, J.F., Yokoyama, R., Nishitani, K., Satoh, S. and Furukawa, J. (2012) Effect of silicon deficiency on secondary cell wall synthesis in rice leaf. J. Plant Res., 125, 771-779. https://doi.org/10.1007/s10265-012-0489-3
- Jian, F.M., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., Ishiguro, M., Murata, Y. and Yano, M. (2006) A silicon transporter in rice. Nature, 440, 688-691. https://doi.org/10.1038/nature04590
- Jian, F.M., Yamaji, N., Mitani, N., Xu, X.Y., Su, Y.H., McGrath, S.P. and Zhao, F.J. (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Natl. Acad. Sci. U.S.A., 105, 9931-9935. https://doi.org/10.1073/pnas.0802361105
- Xu, X.Y., McGrath, S.P., Meharg, A.A. and Zhao, F.J. (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ. Sci. Technol., 42, 5574-5579. https://doi.org/10.1021/es800324u
- Arao, T., Kawasaki, A., Baba, K., Mori, S. and Matsumoto, S. (2009) Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ. Sci. Technol., 43, 9361-9367. https://doi.org/10.1021/es9022738
- Moreno-Jimenez, E., Meharg, A.A., Smolders, E., Manzano, R., Becerra, D., Sanchez-Llerena, J., Albarran, A. and Lopez-Pinero, A. (2014) Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium. Sci. Total Environ., 485-486, 468-473. https://doi.org/10.1016/j.scitotenv.2014.03.106
- Hu, P., Huang, J., Ouyang, Y., Wu, L., Song, J., Wang, S., Li, Z., Han, C., Zhou, L., Huang, Y., Luo, Y. and Christie, P. (2013) Water management affects arsenic and cadmium accumulation in different rice cultivars. Environ. Geochem. Health, 35, 767-778. https://doi.org/10.1007/s10653-013-9533-z
- Arao, T. (2019) Mitigation strategies for cadmium and arsenic in rice in Cadmium Toxicity New Aspects in Human Disease, Rice Contamination, and Cytotoxicity (Himeno, S. and Aoshima, K. Eds.). Springer, Singapore, pp. 125-138.
- Horiguchi, H. (2019) Cadmium exposure and its effects on the health status of rice farmers in Akita prefecture in Cadmium Toxicity New Aspects in Human Disease, Rice Contamination, and Cytotoxicity (Himeno, S. and Aoshima, K. Eds.). Springer, Singapore, pp. 75-83.
- Codex Alimentarius Commission (2014) Distribution of the report of the eighth session of the Codex Committee on contaminants in foods (REP14/CF). FAO/WHO.
- Ishikawa, S., Makino, T., Ito, M., Harada, K., Nakada, H., Nishida, I., Nishimura, M., Tokunaga, T., Shirao, K., Yoshizawa, C., Matsuyama, M., Abe, T. and Arao, T. (2016) Low-cadmium rice (Oryza sativa L.) cultivar can simultaneously reduce arsenic and cadmium concentrations in rice grains. Soil Sci. Plant Nutr., 62, 327-339. https://doi.org/10.1080/00380768.2016.1144452