DOI QR코드

DOI QR Code

Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures

  • Wong, K.L. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Chuan, M.W. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Chong, W.K. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Alias, N.E. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Hamzah, A. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Lim, C.S. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Tan, M.L.P. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
  • Received : 2019.01.20
  • Accepted : 2019.04.29
  • Published : 2019.05.25

Abstract

Graphene, with impressive electronic properties, have high potential in the microelectronic field. However, graphene itself is a zero bandgap material which is not suitable for digital logic gates and its application. Thus, much focus is on graphene nanoribbons (GNRs) that are narrow strips of graphene. During GNRs fabrication process, the occurrence of defects that ultimately change electronic properties of graphene is difficult to avoid. The modelling of GNRs with defects is crucial to study the non-idealities effects. In this work, nearest-neighbor tight-binding (TB) model for GNRs is presented with three main simplifying assumptions. They are utilization of basis function, Hamiltonian operator discretization and plane wave approximation. Two major edges of GNRs, armchair-edged GNRs (AGNRs) and zigzag-edged GNRs (ZGNRs) are explored. With single vacancy (SV) defects, the components within the Hamiltonian operator are transformed due to the disappearance of tight-binding energies around the missing carbon atoms in GNRs. The size of the lattices namely width and length are varied and studied. Non-equilibrium Green's function (NEGF) formalism is employed to obtain the electronics structure namely band structure and density of states (DOS) and all simulation is implemented in MATLAB. The band structure and DOS plot are then compared between pristine and defected GNRs under varying length and width of GNRs. It is revealed that there are clear distinctions between band structure, numerical DOS and Green's function DOS of pristine and defective GNRs.

Keywords

References

  1. Ashrafi, A.R., Cataldo, F., Iranmanesh, A. and Ori, O. (2013), Topological Modelling of Nanostructures and Extended Systems, Springer Nature, Dubrovnik, Croatia.
  2. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162. DOI: https://doi.org/10.12989/anr.2018.6.2.147
  3. Chang, S., Zhang, Y., Huang, Q., Wang, H. and Wang, G. (2013), "Effects of vacancy defects on graphene nanoribbon field effect transistor", IET Micro Nano Letters, 8(11), 816-821. DOI: https://doi:10.1049/mnl.2013.0457
  4. Datta, S. (1997), Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, UK.
  5. Datta, S. (2002), "The non-equilibrium Green's function (NEGF) formalism: An elementary introduction", Digest. Int. Electron Devices Meeting, pp. 703-706. DOI: https://doi:10.1109/IEDM.2002.1175935
  6. Datta, S. (2005), Quantum Transport: Atom to Transistor, Cambridge University Press, Cambridge, UK.
  7. de Brito Mota, F., Azevedo, S. and de Castilho, C.M. (2015), "Structural and electronic properties of perfect and defective BN nanoribbons: A DFT study", Physica E: Low-dimensional Systems and Nanostructures, 74, 233-240. DOI: https://doi.1016/j.physe.2015.06.028 https://doi.org/10.1016/j.physe.2015.06.028
  8. Goh, E., Chin, H.C., Wong, K.L, Indra, I.S.B. and Tan, M.L.P. (2018), "Modeling and Simulation of the Electronic Properties in Graphene Nanoribbons of Varying Widths and Lengths Using Tight-Binding Hamiltonian", J. Nanoelectron. Optoelectro. 13(2), 289-300. DOI: https://doi.org/10.1166/jno.2018.2206
  9. Geim, A.K. and Novoselov, K.S. (2007), "The rise of graphene", Nat. Mater., 6(3), 183-191. https://doi.org/10.1038/nmat1849
  10. Gracia-Espino, E., Lopez-Urias, F., Kim, Y.A., Hayashi, T., Muramatsu, H., Endo, M., Terrones, H., Terrones, M. and Dresselhaus, M.S. (2013), "Novel Carbon-Based Nanomaterials: Graphene and Graphitic Nanoribbons", Elsevier Inc., pp. 61-87.
  11. Guseinov, N.R., Baigarinova, G.A. and Ilyin, A.M. (2016), "Structural damaging in few-layer graphene due to the low energy electron irradiation", Adv. Nano Res., Int. J., 4(1), 45-50. DOI: https://doi.org/10.12989/anr.2016.4.1.045
  12. Han, M.Y., Ozyilmaz, B., Zhang, Y. and Kim, P. (2007), "Energy band-gap engineering of graphene nanoribbons", Phys. Rev. Lett., 98(20), 206805. DOI: https://doi:10.1103/PhysRevLett.98
  13. Indra, I.S.B., Chin, H.C., Wong, K.L., Goh, E., Lim, C.S. and Tan, M.L.P. (2018), "Graphene Nanoribbon Simulator of Electronic Properties Using MATLAB", J. Nanoelectro. Optoelectro., 13(3), 405-414. DOI: https://doi.org/10.1166/jno.2018.2247
  14. Kim, Y., Ihm, J., Yoon, E. and Lee, G.D. (2011), "Dynamics and stability of divacancy defects in graphene", Phys. Rev. B, 84(7), p. 075445. https://doi.org/10.1103/PhysRevB.84.075445
  15. Li T.C. and Lu S.-P. (2008), "Quantum conductance of graphene nanoribbons with edge defect", Phys. Rev. B, 77(8), 085408. DOI: https://doi.org/10.1103/PhysRevB.77.085408
  16. Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F. and Zettl, A. (2008), "Direct imaging of lattice atoms and topological defects in graphene membranes", Nano Lett., 8(11), 3582-3586. DOI: https://doi:10.1021/nl801386m
  17. Nakada, K.F.M., Dresselhaus, G. and Dresselhaus, M.S. (1996), "Edge state in graphene ribbons: nanometer size effect and edge shape dependence", Phys. Rev. B, 54(24), 17954. https://doi.org/10.1103/PhysRevB.54.17954
  18. Oxtoby, D.W., Gillis, H.P. and Butler, L.J. (2015), Principles of Modern Chemistry, Cengage Learning, Boston, MA, USA.
  19. Reich, S., Thomsen, C. and Maultzsch, J. (2008), Carbon Nanotubes: Basic Concepts and Physical Properties, John Wiley and Sons, Germany.
  20. Rodriguez-Perez, M., Villanueva-Cab, J. and Pal, U. (2017), "Evaluation of thermally and chemically reduced graphene oxide films as counter electrodes on dye-sensitized solar cells", Adv. Nano Res., Int. J., 5(3), 231-244. DOI: https://doi.org/10.12989/anr.2017.5.3.231
  21. Schrodinger, E. (1926), "An undulatory theory of the mechanics of atoms and molecules", Phys. Rev., 28(6), 1049. DOI: https://doi 10.1103/PhysRev.28.1049
  22. Terrones, H., Lv, R., Terrones, M. and Dresselhaus, M.S. (2012), "The role of defects and doping in 2D graphene sheets and 1D nanoribbons", Reports on Progress in Physics, 75(6), 062501. DOI: https://doi.org/10.1088/0034-4885/75/6/062501.
  23. Tong, G.-P. (2013), Electronic Properties of Deformed Graphene Nanoribbons, INTECH Open Access Publisher. DOI: https://dx.doi.org/10.5772/51348
  24. Tran, N., Lin, S.-Y., Lin, C.-Y. and Lin, M.-F. (2017), Geometric and Electronic Properties of Graphene-related Systems: Chemical bonding Schemes, CRC Press, Boca Raton, FL, USA.
  25. Tsuneda, T. (2014), Density Functional Theory in Quantum Chemistry, Springer, Japan.
  26. Vicarelli, L., Heerema, S.J., Dekker, C. and Zandbergen, H.W. (2015), "Controlling Defects in Graphene for Optimizing the Electrical Properties of Graphene Nanodevices", ACS Nano, 9(4), 3428-3435. DOI: https://doi:10.1021/acsnano.5b01762
  27. Wakabayashi, K., Fujita, M., Ajiki, H. and Sigrist, M. (1999), "Electronic and magnetic properties of nanographite ribbons", Phys. Rev. B, 59(12), 8271-8282. DOI: https://doi:10.1103/PhysRevB.59.8271
  28. Wang, J. and Chan, K. (2015), "Generation of valley polarized current in graphene using quantum adiabatic pumping", Adv. Nano Res., Int. J., 3(1), 39-47. DOI: https://doi.org/10.12989/anr.2015.3.1.039
  29. Wong, K.L., Mahadzir, M.A.S., Chong, W.K., Rusli, M.S., Lim, C.S. and Tan, M.L.P. (2018), "Graphene Nanoribbon Simulator of Vacancy Defects On Electronic Structure", Indonesian J. Elect. Eng. Info., 6(3), 265-273. DOI: https://doi.org/10.11591/ijeei.v6i3.576
  30. Zaminpayma, E., Razavi, M.E. and Nayebi, P. (2017), "Electronic properties of graphene with single vacancy and Stone-Wales defects", Appl. Surface Sci., 414, 101-106. DOI: https://doi.org/10.1016/j.apsusc.2017.04.065
  31. Zenkour, A.M. (2016), "Buckling of a single-layered graphene sheet embedded in visco-Pasternak's medium via nonlocal first-order theory", Adv. Nano Res., Int. J., 4(4), 309-326. DOI: https://doi.org/10.12989/anr.2016.4.4.309
  32. Zhang, C., Fu, L., Liu, N., Liu, M., Wang, Y. and Liu, Z., (2011), "Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources", Adv. Mater., 23(8), 1020-1024. DOI: https://doi.org/10.1002/adma.201004110

Cited by

  1. Device modelling and performance analysis of two-dimensional AlSi3 ballistic nanotransistor vol.10, pp.1, 2021, https://doi.org/10.12989/anr.2021.10.1.091