References
- Ashrafi, A.R., Cataldo, F., Iranmanesh, A. and Ori, O. (2013), Topological Modelling of Nanostructures and Extended Systems, Springer Nature, Dubrovnik, Croatia.
- Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162. DOI: https://doi.org/10.12989/anr.2018.6.2.147
- Chang, S., Zhang, Y., Huang, Q., Wang, H. and Wang, G. (2013), "Effects of vacancy defects on graphene nanoribbon field effect transistor", IET Micro Nano Letters, 8(11), 816-821. DOI: https://doi:10.1049/mnl.2013.0457
- Datta, S. (1997), Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, UK.
- Datta, S. (2002), "The non-equilibrium Green's function (NEGF) formalism: An elementary introduction", Digest. Int. Electron Devices Meeting, pp. 703-706. DOI: https://doi:10.1109/IEDM.2002.1175935
- Datta, S. (2005), Quantum Transport: Atom to Transistor, Cambridge University Press, Cambridge, UK.
- de Brito Mota, F., Azevedo, S. and de Castilho, C.M. (2015), "Structural and electronic properties of perfect and defective BN nanoribbons: A DFT study", Physica E: Low-dimensional Systems and Nanostructures, 74, 233-240. DOI: https://doi.1016/j.physe.2015.06.028 https://doi.org/10.1016/j.physe.2015.06.028
- Goh, E., Chin, H.C., Wong, K.L, Indra, I.S.B. and Tan, M.L.P. (2018), "Modeling and Simulation of the Electronic Properties in Graphene Nanoribbons of Varying Widths and Lengths Using Tight-Binding Hamiltonian", J. Nanoelectron. Optoelectro. 13(2), 289-300. DOI: https://doi.org/10.1166/jno.2018.2206
- Geim, A.K. and Novoselov, K.S. (2007), "The rise of graphene", Nat. Mater., 6(3), 183-191. https://doi.org/10.1038/nmat1849
- Gracia-Espino, E., Lopez-Urias, F., Kim, Y.A., Hayashi, T., Muramatsu, H., Endo, M., Terrones, H., Terrones, M. and Dresselhaus, M.S. (2013), "Novel Carbon-Based Nanomaterials: Graphene and Graphitic Nanoribbons", Elsevier Inc., pp. 61-87.
- Guseinov, N.R., Baigarinova, G.A. and Ilyin, A.M. (2016), "Structural damaging in few-layer graphene due to the low energy electron irradiation", Adv. Nano Res., Int. J., 4(1), 45-50. DOI: https://doi.org/10.12989/anr.2016.4.1.045
- Han, M.Y., Ozyilmaz, B., Zhang, Y. and Kim, P. (2007), "Energy band-gap engineering of graphene nanoribbons", Phys. Rev. Lett., 98(20), 206805. DOI: https://doi:10.1103/PhysRevLett.98
- Indra, I.S.B., Chin, H.C., Wong, K.L., Goh, E., Lim, C.S. and Tan, M.L.P. (2018), "Graphene Nanoribbon Simulator of Electronic Properties Using MATLAB", J. Nanoelectro. Optoelectro., 13(3), 405-414. DOI: https://doi.org/10.1166/jno.2018.2247
- Kim, Y., Ihm, J., Yoon, E. and Lee, G.D. (2011), "Dynamics and stability of divacancy defects in graphene", Phys. Rev. B, 84(7), p. 075445. https://doi.org/10.1103/PhysRevB.84.075445
- Li T.C. and Lu S.-P. (2008), "Quantum conductance of graphene nanoribbons with edge defect", Phys. Rev. B, 77(8), 085408. DOI: https://doi.org/10.1103/PhysRevB.77.085408
- Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F. and Zettl, A. (2008), "Direct imaging of lattice atoms and topological defects in graphene membranes", Nano Lett., 8(11), 3582-3586. DOI: https://doi:10.1021/nl801386m
- Nakada, K.F.M., Dresselhaus, G. and Dresselhaus, M.S. (1996), "Edge state in graphene ribbons: nanometer size effect and edge shape dependence", Phys. Rev. B, 54(24), 17954. https://doi.org/10.1103/PhysRevB.54.17954
- Oxtoby, D.W., Gillis, H.P. and Butler, L.J. (2015), Principles of Modern Chemistry, Cengage Learning, Boston, MA, USA.
- Reich, S., Thomsen, C. and Maultzsch, J. (2008), Carbon Nanotubes: Basic Concepts and Physical Properties, John Wiley and Sons, Germany.
- Rodriguez-Perez, M., Villanueva-Cab, J. and Pal, U. (2017), "Evaluation of thermally and chemically reduced graphene oxide films as counter electrodes on dye-sensitized solar cells", Adv. Nano Res., Int. J., 5(3), 231-244. DOI: https://doi.org/10.12989/anr.2017.5.3.231
- Schrodinger, E. (1926), "An undulatory theory of the mechanics of atoms and molecules", Phys. Rev., 28(6), 1049. DOI: https://doi 10.1103/PhysRev.28.1049
- Terrones, H., Lv, R., Terrones, M. and Dresselhaus, M.S. (2012), "The role of defects and doping in 2D graphene sheets and 1D nanoribbons", Reports on Progress in Physics, 75(6), 062501. DOI: https://doi.org/10.1088/0034-4885/75/6/062501.
- Tong, G.-P. (2013), Electronic Properties of Deformed Graphene Nanoribbons, INTECH Open Access Publisher. DOI: https://dx.doi.org/10.5772/51348
- Tran, N., Lin, S.-Y., Lin, C.-Y. and Lin, M.-F. (2017), Geometric and Electronic Properties of Graphene-related Systems: Chemical bonding Schemes, CRC Press, Boca Raton, FL, USA.
- Tsuneda, T. (2014), Density Functional Theory in Quantum Chemistry, Springer, Japan.
- Vicarelli, L., Heerema, S.J., Dekker, C. and Zandbergen, H.W. (2015), "Controlling Defects in Graphene for Optimizing the Electrical Properties of Graphene Nanodevices", ACS Nano, 9(4), 3428-3435. DOI: https://doi:10.1021/acsnano.5b01762
- Wakabayashi, K., Fujita, M., Ajiki, H. and Sigrist, M. (1999), "Electronic and magnetic properties of nanographite ribbons", Phys. Rev. B, 59(12), 8271-8282. DOI: https://doi:10.1103/PhysRevB.59.8271
- Wang, J. and Chan, K. (2015), "Generation of valley polarized current in graphene using quantum adiabatic pumping", Adv. Nano Res., Int. J., 3(1), 39-47. DOI: https://doi.org/10.12989/anr.2015.3.1.039
- Wong, K.L., Mahadzir, M.A.S., Chong, W.K., Rusli, M.S., Lim, C.S. and Tan, M.L.P. (2018), "Graphene Nanoribbon Simulator of Vacancy Defects On Electronic Structure", Indonesian J. Elect. Eng. Info., 6(3), 265-273. DOI: https://doi.org/10.11591/ijeei.v6i3.576
- Zaminpayma, E., Razavi, M.E. and Nayebi, P. (2017), "Electronic properties of graphene with single vacancy and Stone-Wales defects", Appl. Surface Sci., 414, 101-106. DOI: https://doi.org/10.1016/j.apsusc.2017.04.065
- Zenkour, A.M. (2016), "Buckling of a single-layered graphene sheet embedded in visco-Pasternak's medium via nonlocal first-order theory", Adv. Nano Res., Int. J., 4(4), 309-326. DOI: https://doi.org/10.12989/anr.2016.4.4.309
- Zhang, C., Fu, L., Liu, N., Liu, M., Wang, Y. and Liu, Z., (2011), "Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources", Adv. Mater., 23(8), 1020-1024. DOI: https://doi.org/10.1002/adma.201004110
Cited by
- Device modelling and performance analysis of two-dimensional AlSi3 ballistic nanotransistor vol.10, pp.1, 2021, https://doi.org/10.12989/anr.2021.10.1.091