DOI QR코드

DOI QR Code

Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure

  • Mehar, Kulmani (Department of Mechanical Engineering, Madanapalle Institute of Technology & Science) ;
  • Panda, Subrata Kumar (Department of Mechanical Engineering, National Institute of Technology Rourkela)
  • Received : 2018.10.11
  • Accepted : 2019.04.30
  • Published : 2019.05.25

Abstract

The thermal buckling temperature values of the graded carbon nanotube reinforced composite shell structure is explored using higher-order mid-plane kinematics and multiscale constituent modeling under two different thermal fields. The critical values of buckling temperature including the effect of in-plane thermal loading are computed numerically by minimizing the final energy expression through a linear isoparametric finite element technique. The governing equation of the multiscale nanocomposite is derived via the variational principle including the geometrical distortion through Green-Lagrange strain. Additionally, the model includes different grading patterns of nanotube through the panel thickness to improve the structural strength. The reliability and accuracy of the developed finite element model are varified by comparison and convergence studies. Finally, the applicability of present developed model was highlight by enlighten several numerical examples for various type shell geometries and design parameters.

Keywords

References

  1. Amabili, M. and Tajahmadi, M.R.S. (2012), "Thermal post-buckling of laminated and isotropic rectangular plates with fixed edges: Comparison of experimental and numerical results", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 226, 2393-2401. DOI: 10.1177/0954406211434496
  2. Ansari, R. and Torabi, J. (2016), "Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading", Compos. Part B Eng., 95, 196-208. DOI: 10.1016/j.compositesb.2016.03.080
  3. Ansari, R., Torabi, J. and Shojaei, M.F. (2017), "Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading", Compos. Part B Eng., 109, 197-213. DOI: 10.1016/j.compositesb.2016.10.050
  4. Arani, A.G. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concr., 17, 567-578. DOI: 10.12989/cac.2016.17.5.567
  5. Arani, A.G., Kolahchi, R. and Vossough, H. (2012), "Buckling analysis and smart control of SLGS using elastically coupled PVDF nanoplate based on the nonlocal Mindlin plate theory", Phys. B Condens Matter, 407, 4458-4465. DOI: 10.1016/j.physb.2012.07.046
  6. Arani, A.G., Abdollahian, M., Kolahchi, R. and Rahmati, A.H. (2013), "Electro-thermo-torsional buckling of an embedded armchair DWBNNT using nonlocal shear deformable shell mode", Compos. Part B Eng., 51, 291-299. DOI: 10.1016/J.COMPOSITESB.2013.03.017
  7. Arani, A.G., Jafari, G.S. and Kolahchi, R. (2017), "Nonlinear vibration analysis of viscoelastic micro nano-composite sandwich plates integrated with sensor and actuator", Microsyst. Technol., 23, 1509-1535. DOI: 10.1007/s00542-016-3095-9
  8. Baiz, P.M. and Aliabadi, M.H. (2007), "Buckling analysis of shear deformable shallow shells by the boundary element method", Eng. Anal. Bound Elem., 31, 361-372. DOI: 10.1016/j.enganabound.2006.07.008.
  9. Bakora, A. and Tounsi, A. (2015), "Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations", Struct. Eng. Mech., Int. J., 56(1), 85-106. DOI: 10.12989/sem.2015.56.1.085
  10. Barzoki, A.A.M., Arani, A.G., Kolahchi, R. and Mozdianfard, M.R. (2012), "Electro-thermo-mechanical torsional buckling of a piezoelectric polymeric cylindrical shell reinforced by DWBNNTs with an elastic core", Appl. Math. Model., 36, 2983-2995. DOI: 10.1016/J.APM.2011.09.093
  11. Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., Int. J., 21, 883-919. DOI: 10.12989/scs.2016.21.4.883
  12. Berrabah, H.M., Tounsi, A., Semmah, A. and Bedia, E.A.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., Int. J., 48(3), 351-365. DOI: 10.12989/sem.2013.48.3.351
  13. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162. DOI: 10.12989/anr.2018.6.2.147
  14. Bouguenina, O., Belakhdar, K., Tounsi, A. and Bedia, E.A.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., Int. J., 19(3), 679-695. DOI: 10.12989/scs.2015.19.3.679
  15. Bouhadra, A., Benyoucef, S. and Tounsi, A. (2015), "Thermal buckling response of functionally graded plates with clamped boundary conditions", J. Therm. Stress, 38, 630-650. DOI: 10.1080/01495739.2015.1015900
  16. Brighenti, R. (2005a), "Numerical buckling analysis of compressed or tensioned cracked thin plates", Eng. Struct., 27, 265-276. DOI: 10.1016/j.engstruct.2004.10.006
  17. Brighenti, R. (2005b), "Buckling of cracked thin-plates under tension or compression", Thin-Wall. Struct., 43, 209-224. DOI: 10.1016/j.tws.2004.07.006
  18. Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2009), Concepts and Applications of Finite Element Analysis, Fourth edi, John Wiley & Sons Pvt. Ltd., Singapore.
  19. Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., Int. J., 17(1), 69-81. DOI: 10.12989/scs.2014.17.1.069
  20. Duc, N.D., Cong, P.H. and Tuan, N.D. (2017), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations", Thin-Wall. Struct., 115, 300-310. DOI: 10.1016/j.tws.2017.02.016
  21. Fantuzzi, N., Tornabene, F., Bacciocchi, M. and Dimitri, R. (2017), "Free vibration analysis of arbitrarily shaped functionally graded carbon nanotube-reinforced plates", Compos. Part B Eng., 115, 384-408. DOI: 10.1016/j.compositesb.2016.09.021
  22. Farzam, A. and Hassani, B. (2018), "Thermal and mechanical buckling analysis of FG carbon nanotube reinforced composite plates using modified couple stress theory and isogeometric approach", Compos. Struct., 206, 774-790. https://doi.org/10.1016/j.compstruct.2018.08.030
  23. Fazzolari, F.A. (2015), "Natural frequencies and critical temperatures of functionally graded sandwich plates subjected to uniform and non-uniform temperature distributions", Compos. Struct., 121, 197-210. DOI: 10.1016/j.compstruct.2014.10.039
  24. Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater., 109963621772037. DOI: 10.1177/1099636217720373
  25. Hamidi, A., Houari, M.S.A., Mahmoud, S.R.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. DOI: 10.12989/scs.2015.18.1.235
  26. Han, Q., Wang, Z., Nash, D.H. and Liu, P. (2017), "Thermal buckling analysis of cylindrical shell with functionally graded material coating", Compos. Struct., 181, 171-182. https://doi.org/10.1016/j.compstruct.2017.08.085
  27. Kiani, Y. (2017), "Buckling of FG-CNT-reinforced composite plates subjected to parabolic loading", Acta Mech., 228, 1303-1319. DOI: 10.1007/s00707-016-1781-4
  28. Kiani, Y., Dimitri, R. and Tornabene, F. (2018), "Free vibration study of composite conical panels reinforced with FG-CNTs", Eng. Struct., 172, 472-482. DOI: 10.1016/j.engstruct.2018.06.006
  29. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. DOI: 10.1016/j.ast.2017.03.016
  30. Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlinear Dyn., 90, 479-492. DOI: 10.1007/s11071-017-3676-x
  31. Kolahchi, R., Bidgoli, M.R., Beygipoor, G. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 29, 3669-3677. DOI: 10.1007/s12206-015-0811-9
  32. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H., Oskouei, A.N. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Wall. Struct., 113, 162-169. DOI: 10.1016/j.tws.2017.01.016
  33. Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015), "Buckling of FG-CNT reinforced composite thick skew plates resting on Pasternak foundations based on an element-free approach", Appl. Math. Comput., 266, 773-791. DOI: 10.1016/j.amc.2015.06.002
  34. Maghamikia, S. and Jam, J.E. (2011), "Buckling analysis of circular and annular composite plates reinforced with carbon nanotubes using FEM", J. Mech. Sci. Technol., 25, 2805-2810. DOI: 10.1007/s12206-011-0738-8
  35. Mahapatra, T.R., Mehar, K., Panda, S.K., Dewangan, S. and Dash, S. (2017), "flexural strength of functionally graded nanotube reinforced sandwich spherical panel", Proceeding of IOP Conference Series: Materials Science and Engineering, 178, 012031. https://doi.org/10.1088/1757-899X/178/1/012031
  36. Mayandi, K. and Jeyaraj, P. (2015), "Bending, buckling and free vibration characteristics of FG-CNT polymer composite beam under non-uniform thermal load", J. Mater. Des. Appl., 229, 13-28. DOI: 10.1177/1464420713493720
  37. Mehar, K. and Panda, S.K. (2018a), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Technol., 37, 1643-1657. DOI: 10.1002/adv.21821
  38. Mehar, K. and Panda, S.K. (2018b), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., Int. J., 67(6), 565-578. DOI: 10.12989/sem.2018.67.6.565
  39. Mehar, K. and Panda, S.K. (2018c), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39, 2751-2764. DOI: 10.1002/pc.24266
  40. Mehar, K. and Panda, S.K. (2018d), "Thermoelastic flexural analysis of FG-CNT doubly curved shell panel", Aircr. Eng. Aerosp. Technol., 90, 11-23. DOI: 10.1108/AEAT-11-2015-0237.R2
  41. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct. DOI: https://doi.org/10.1016/j.compstruct.2019.03.002
  42. Mehrabadi, S.J., Aragh, B.S., Khoshkhahesh, V. and Taherpour, A. (2012), "Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes", Compos, Part B Eng., 43, 2031-2040. DOI: 10.1016/j.compositesb.2012.01.067
  43. Mirzaei, M. and Kiani, Y. (2016), "Thermal buckling of temperature dependent FG-CNT reinforced composite plates", Meccanica, 51, 2185-2201. DOI: 10.1007/s11012-015-0348-0
  44. Moradi-Dastjerdi, R., Pourasghar, A., Foroutan, M. and Bidram, M. (2014), "Vibration analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube based on mesh-free method", J. Compos. Mater., 48, 1901-1913. DOI: 10.1177/0021998313491617
  45. Moradi-dastjerdi, R., Malek-mohammadi, H. and Mohammadi, H.M. (2017), "Free vibration and buckling analyses of functionally graded nanocomposite plates reinforced by carbon nanotube", Mech. Adv. Compos. Struct., 4, 59-73. DOI: 10.22075/MACS.2016.496
  46. Nejati, M., Dimitri, R., Tornabene, F. and Hossein Yas, M. (2017), "Thermal buckling of nanocomposite stiffened cylindrical shells reinforced by functionally graded wavy carbon nanotubes with temperature-dependent properties", Appl. Sci., 7(12), 1223. https://doi.org/10.3390/app7121223
  47. Pandya, B.N. and Kant, T. (1988), "Finite element analysis of laminated composite plates using a higher-order displacement model", Compos. Sci. Technol., 32, 137-155. DOI: 10.1016/0266-3538(88)90003-6
  48. Rafiee, M., Yang, J. and Kitipornchai, S. (2013), "Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams", Comput. Math. Appl., 66(7), 1147-1160. https://doi.org/10.1016/j.camwa.2013.04.031
  49. Rafiee, M., Nitzsche, F. and Labrosse, M.R. (2018), "Modeling and mechanical analysis of multiscale fiber-reinforced graphene composites: Nonlinear bending, thermal post-buckling and large amplitude vibration", Int. J. Non-Linear Mech., 103, 104-112. https://doi.org/10.1016/j.ijnonlinmec.2018.05.004
  50. Reddy, B.S., Kumar, J.S., Reddy, C.E. and Reddy, K. (2013), "Buckling analysis of functionally graded material plates using higher order shear deformation theory", J. Compos.
  51. Sharma, N., Mahapatra, T.R., Panda, S.K. and Mehar, K. (2018), "Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model", Steel Compos. Struct., Int. J., 28(5), 629-639. DOI: 10.12989/scs.2018.28.5.629
  52. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos Struct, 91,9-19, doi: 10.1016/j.compstruct.2009.04.026.
  53. Shen, H.S. (2011), "Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: Axially-loaded shells", Compos Struct, 93,2096-2108, doi: 10.1016/j.compstruct.2011.02.011.
  54. Shen, H.S. (2012), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells", Compos. Part B Eng., 43, 1030-1038. DOI: 10.1016/j.compositesb.2011.10.004
  55. Shen, H.S. and Xiang, Y. (2013), "Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments", Eng. Struct., 56, 698-708. DOI: 10.1016/j.engstruct.2013.06.002
  56. Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates", Mater. Des., 31, 3403-3411. DOI: 10.1016/j.matdes.2010.01.048
  57. Shen, H.S. and Zhu, Z.H. (2010), "Buckling and postbuckling behavior of functionally graded nanotube-reinforced composite plates in thermal environments", C. Comput. Mater. Contin., 18, 155-182.
  58. Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M. and Carrera, E. (2015), "Stress, vibration and buckling analyses of FGM plates-A state-of-the-art review", Compos. Struct., 120, 10-31. https://doi.org/10.1016/j.compstruct.2014.09.070
  59. Szekrenyes, A. (2012), "Interlaminar stresses and energy release rates in delaminated orthotropic composite plates", Int. J. Solids Struct., 49, 2460-2470. DOI: 10.1016/j.ijsolstr.2012.05.010
  60. Szekrenyes, A. (2014), "Analysis of classical and first-order shear deformable cracked orthotropic plates", J. Compos. Mater., 48, 1441-1457. DOI: 10.1177/0021998313487756
  61. Togun, N. (2016), "Nonlinear vibration of nanobeam with attached mass at the free end via nonlocal elasticity theory", Microsyst. Technol., 22, 2361-2362. DOI: 10.1007/s00542-016-3082-1
  62. Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2017), "Nonlinear size-dependent dynamic buckling analysis of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Microsyst. Technol., 23, 5727-5744. DOI: 10.1007/s00542-017-3407-8
  63. Torabi, J., Ansari, R. and Hassani, R. (2019), "Numerical study on the thermal buckling analysis of CNT-reinforced composite plates with different shapes based on the higher-order shear deformation theory", Eur. J. Mech.-A/Solids, 73, 144-160. https://doi.org/10.1016/j.euromechsol.2018.07.009
  64. Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2017), "Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures", Polym. Compos., 16, 101-113. DOI: 10.1002/pc.24520
  65. Yang, J., Ke, L.L. and Feng, C. (2015), "Dynamic buckling of thermo-electro-mechanically loaded FG-CNTRC beams", Int. J. Struct. Stab. Dyn., 15, 1-17. DOI: 10.1142/S0219455415400179
  66. Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int J. Solids Struct., 42, 5243-5258. DOI: 10.1016/j.ijsolstr.2005.02.016
  67. Zhang, L.W., Lei, Z.X. and Liew, K.M. (2015a), "An element-free IMLS-Ritz framework for buckling analysis of FG-CNT reinforced composite thick plates resting on Winkler foundations", Eng. Anal. Bound Elem., 58, 7-17. DOI: 10.1016/j.enganabound.2015.03.004
  68. Zhang, L.W., Lei, Z.X. and Liew, K.M. (2015b), "Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach", Compos. Part B Eng., 75, 36-46. DOI: 10.1016/j.compositesb.2015.01.033
  69. Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., Bedia, E.A.A. and Hadji, L. (2014), "Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal Timoshenko beam theory", Mech. Compos. Mater., 50, 95-104. DOI: 10.1007/s11029-014-9396-0

Cited by

  1. A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications vol.11, pp.6, 2019, https://doi.org/10.12989/mwt.2020.11.6.399
  2. Application of Kelvin's theory for structural assessment of FG rotating cylindrical shell: Vibration control vol.10, pp.6, 2019, https://doi.org/10.12989/acc.2020.10.6.499
  3. Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2019, https://doi.org/10.12989/scs.2020.37.6.695
  4. The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory vol.10, pp.1, 2019, https://doi.org/10.12989/anr.2021.10.1.015
  5. Analytical solution for analyzing initial curvature effect on vibrational behavior of PM beams integrated with FGP layers based on trigonometric theories vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.235
  6. Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051
  7. On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2019, https://doi.org/10.12989/scs.2021.39.2.149
  8. Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam vol.78, pp.2, 2021, https://doi.org/10.12989/sem.2021.78.2.117
  9. Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT vol.91, pp.7, 2019, https://doi.org/10.1007/s00419-021-01973-7
  10. Mechanical and thermal buckling analysis of laminated composite plates vol.40, pp.5, 2019, https://doi.org/10.12989/scs.2021.40.5.697