참고문헌
- Assadi, A. and Farshi, B. (2011), "Size dependent vibration of curved nanobeams and rings including surface energies", Physica E: Low-dimens. Syst. Nanostruct., 43(4), 975-978. https://doi.org/10.1016/j.physe.2010.11.031
- Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-dimens. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
- Barati, M.R., Zenkour, A.M. and Shahverdi, H. (2016), "Thermo-mechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory", Compos. Struct., 141, 203-212. https://doi.org/10.1016/j.compstruct.2016.01.056
- Beni, Y.T. (2016), "Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams", J. Intell. Mater. Syst. Struct., 1045389X15624798.
- Ebrahimi, F. and Barati, M.R. (2016), "Hygrothermal buckling analysis of magnetically actuated embedded higher order functionally graded nanoscale beams considering the neutral surface position", J. Thermal Stress., 39(10), 1210-1229. https://doi.org/10.1080/01495739.2016.1215726
- Ebrahimi, F. and Barati, M.R. (2017a), "Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams", J. Mech., 33(1), 23-33 https://doi.org/10.1017/jmech.2016.46
- Ebrahimi, F. and Barati, M.R. (2017b), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Thermal Stress., 40(5), 548-563. https://doi.org/10.1080/01495739.2016.1254076
- Ebrahimi, F. and Barati, M.R. (2017c), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intel. Mater. Syst. Struct., 28(11), 1472-1490. https://doi.org/10.1177/1045389X16672569
- Ebrahimi, F. and Barati, M.R. (2018a), "Damping vibration behavior of visco-elastically coupled double-layered graphene sheets based on nonlocal strain gradient theory", Microsyst. Technol., 24(3), 1643-1658. https://doi.org/10.1007/s00542-017-3529-z
- Ebrahimi, F. and Barati, M.R. (2018b), "Vibration analysis of graphene sheets resting on the orthotropic elastic medium subjected to hygro-thermal and in-plane magnetic fields based on the nonlocal strain gradient theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(13), pp. 2469-2481. https://doi.org/10.1177/0954406217720232
- Ebrahimi, F. and Dabbagh, A. (2017a), "Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates", Mater. Res. Express, 4(2), 025003. https://doi.org/10.1088/2053-1591/aa55b5
- Ebrahimi, F. and Dabbagh, A. (2017b), "On flexural wave propagation responses of smart fg magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293. https://doi.org/10.1016/j.compstruct.2016.11.058
- Ebrahimi, F. and Dabbagh, A. (2017c), "Wave propagation analysis of embedded nanoplates based on a nonlocal strain gradient-based surface piezoelectricity theory", Eur. Phys. J. Plus, 132(11), 449. https://doi.org/10.1140/epjp/i2017-11694-2
- Ebrahimi, F. and Dabbagh, A. (2017d), "Wave propagation analysis of smart rotating porous heterogeneous piezo-electric nanobeams", Eur. Phys. J. Plus, 132(4), 153. https://doi.org/10.1140/epjp/i2017-11366-3
- Ebrahimi, F. and Dabbagh, A. (2018a), "Effect of humid-thermal environment on wave dispersion characteristics of single-layered graphene sheets", Appl. Phys. A, 124(4), 301. https://doi.org/10.1007/s00339-018-1734-y
- Ebrahimi, F. and Dabbagh, A. (2018b), "On modeling wave dispersion characteristics of protein lipid nanotubules", J. Biomech., 77, 1-7. https://doi.org/10.1016/j.jbiomech.2018.05.038
- Ebrahimi, F. and Dabbagh, A. (2018c), "On wave dispersion characteristics of double-layered graphene sheets in thermal environments", J. Electromag. Waves Appl., 32(15), 1869-1888. https://doi.org/10.1080/09205071.2017.1417918
- Ebrahimi, F. and Dabbagh, A. (2018d), "Thermo-magnetic field effects on the wave propagation behavior of smart magnetostrictive sandwich nanoplates", Eur. Phys. J. Plus, 133(3), 97. https://doi.org/10.1140/epjp/i2018-11910-7
- Ebrahimi, F. and Dabbagh, A. (2018e), "Wave dispersion characteristics of orthotropic double-nanoplate-system subjected to a longitudinal magnetic field", Microsyst. Technol., 24(7), 2929-2939. https://doi.org/10.1007/s00542-018-3738-0
- Ebrahimi, F. and Dabbagh, A. (2018f), "Wave dispersion characteristics of rotating heterogeneous magneto-electro-elastic nanobeams based on nonlocal strain gradient elasticity theory", J. Electromag. Waves Appl., 32(2), 138-169. https://doi.org/10.1080/09205071.2017.1369903
- Ebrahimi, F. and Dabbagh, A. (2018g), "Wave propagation analysis of magnetostrictive sandwich composite nanoplates via nonlocal strain gradient theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(22), 4180-4192. https://doi.org/10.1177/0954406217748687
- Ebrahimi, F. and Haghi, P. (2018), "Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment", Adv. Nano Res., Int. J., 6(1), 21-37. https://doi.org/10.21474/IJAR01/7640
- Ebrahimi, F. and Hosseini, S. (2016), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Thermal Stress., 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684
- Ebrahimi, F. and Salari, E. (2015a), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position", CMES: Comput. Model. Eng. Sci., 105(2), 151-181.
- Ebrahimi, F. and Salari, E. (2015b), "Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007
- Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of fg nanobeams subjected to linear and non-linear temperature distributions", J. Thermal Stress., 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980
- Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016a), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
- Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016b), "Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams", Appl. Phys. A, 122(11), 949. https://doi.org/10.1007/s00339-016-0465-1
- Ebrahimi, F., Dabbagh, A. and Barati, M.R. (2016c), "Wave propagation analysis of a size-dependent magneto-electro-elastic heterogeneous nanoplate", Eur. Phys. J. Plus, 131(12), 433. https://doi.org/10.1140/epjp/i2016-16433-7
- Ebrahimi, F., Barati, M.R. and Haghi, P. (2017), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Thermal Stress., 40(5), 535-547. https://doi.org/10.1080/01495739.2016.1230483
- Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2018a), "Wave propagation in embedded inhomogeneous nanoscale plates incorporating thermal effects", Waves Random Complex Media, 28(2), 215-235. https://doi.org/10.1080/17455030.2017.1337281
- Ebrahimi, F., Haghi, P. and Dabbagh, A. (2018b), "Analytical wave dispersion modeling in advanced piezoelectric double-layered nanobeam systems", Struct. Eng. Mech., Int. J., 67(2), 175-183.
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Hosseini, S.A.H. and Rahmani, O. (2016), "Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model", Appl. Phys. A, 122(3), 1-11.
- Hosseini-Hashemi, S., Nahas, I., Fakher, M. and Nazemnezhad, R. (2014), "Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity", Acta Mechanica, 225(6), 1555-1564. https://doi.org/10.1007/s00707-013-1014-z
- Kananipour, H., Ahmadi, M. and Chavoshi, H. (2014), "Application of nonlocal elasticity and DQM to dynamic analysis of curved nanobeams", Latin Am. J. Solids Struct., 11(5), 848-853. https://doi.org/10.1590/S1679-78252014000500007
- Li, L. and Hu, Y. (2017), "Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory", Compos. Struct., 172, 242-250. https://doi.org/10.1016/j.compstruct.2017.03.097
- Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014
- Li, L., Li, X. and Hu, Y. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
- Niknam, H. and Aghdam, M.M. (2015), "A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation", Compos. Struct., 119, 452-462. https://doi.org/10.1016/j.compstruct.2014.09.023
- Ochs, S., Li, S., Adams, C. and Melz, T. (2017), "Efficient Experimental Validation of Stochastic Sensitivity Analyses of Smart Systems", In: Smart Structures and Materials, Springer International Publishing, pp. 97-113.
- Rahmani, O. and Jandaghian, A.A. (2015), "Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory", Appl. Phys. A, 119(3), 1019-1032. https://doi.org/10.1007/s00339-015-9061-z
- Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
- Setoodeh, A., Derahaki, M. and Bavi, N. (2015), "DQ thermal buckling analysis of embedded curved carbon nanotubes based on nonlocal elasticity theory", Latin Am. J. Solids Struct., 12(10), 1901-1917. https://doi.org/10.1590/1679-78251894
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
- Tufekci, E., Aya, S.A. and Oldac, O. (2016), "In-Plane Static Analysis of Nonlocal Curved Beams with Varying Curvature and Cross-Section", Int. J. Appl. Mech., 8(1), 1650010. https://doi.org/10.1142/S1758825116500101
- Vinyas, M. (2019a), "A higher order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods", Compos. Part B, 158, 286-301. https://doi.org/10.1016/j.compositesb.2018.09.086
- Vinyas, M. (2019b), "Vibration control of skew magneto-electro-elastic plates using active constrained layer damping", Compos. Struct., 208, 600-617. https://doi.org/10.1016/j.compstruct.2018.10.046
- Vinyas, M. and Kattimani, S.C. (2017a), "Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads", Composite Structures, 163, 216-237. https://doi.org/10.1016/j.compstruct.2016.12.040
- Vinyas, M. and Kattimani, S.C. (2017b), "A Finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading", Structural Engineering and Mechanics, 62, 519-535. https://doi.org/10.12989/sem.2017.62.5.519
- Vinyas, M. and Kattimani, S.C. (2017c), "Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: A finite element study", Composite Structures, 178, 63-86. https://doi.org/10.1016/j.compstruct.2017.06.068
- Vinyas, M. and Kattimani, S.C. (2018a), "Finite element evaluation of free vibration characteristics of magneto-electro-elastic rectangular plates in hygrothermal environment using higher-order shear deformation theory", Composite Structures, 202, 1339-1352. https://doi.org/10.1016/j.compstruct.2018.06.069
-
Vinyas, M. and Kattimani, S.C. (2018b), "Investigation of the effect of
$BaTiO_3/CoFe_2O_4$ particle arrangement on the static response of magneto-electro-thermo-elastic plates", Composite Structures, 185(1), 51-64. https://doi.org/10.1016/j.compstruct.2017.10.073 - Vinyas, M., Kattimani, S.C., Loja, M.A.R. and Vishwas, M. (2018), "Effect of BaTiO3/CoFe2O4 micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams in different thermal environment", Mater. Res. Express, 5, 125702. https://doi.org/10.1088/2053-1591/aae0c8
- Vinyas, M., Nischith, G., Loja, M.A.R., Ebrahimi, F. and Duc, N.D. (2019), "Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory", Compos. Struct., 214, 132-142. https://doi.org/10.1016/j.compstruct.2019.02.010
- Yan, Z. and Jiang, L. (2011), "Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects", Journal of Physics D: Applied Physics, 44(36), 365301. https://doi.org/10.1088/0022-3727/44/36/365301
- Zhu, X. and Li, L. (2017a), "Twisting statics of functionally graded nanotubes using Eringen's nonlocal integral model", Compos. Struct., 178, 87-96. https://doi.org/10.1016/j.compstruct.2017.06.067
- Zhu, X. and Li, L. (2017b), "Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity", Int. J. Mech. Sci., 133, 639-650. https://doi.org/10.1016/j.ijmecsci.2017.09.030
피인용 문헌
- Nonlinear vibration behavior of hybrid multi-scale cylindrical panels via semi numerical method vol.28, pp.3, 2021, https://doi.org/10.12989/cac.2021.28.3.233