DOI QR코드

DOI QR Code

Novel approaches for generating and manipulating diploid strains of Chlamydomonas reinhardtii

  • Received : 2019.01.22
  • Accepted : 2019.02.25
  • Published : 2019.03.15

Abstract

Genetic study of haploid organisms offers the advantage that mutant phenotypes are directly displayed, but has the disadvantage that strains carrying lethal mutations are not readily maintained. We describe an approach for generating and performing genetic analysis of diploid strains of Chlamydomonas reinhardtii, which is normally haploid. First protocol utilizes self-mating diploid strains that will facilitate the genetic analysis of recessive lethal mutations by offering a convenient way to produce homozygous diploids in a single mating. Second protocol is designed to reduce the chance of contamination and the accumulation of spontaneous mutations for long-term storage of mutant strains. Third protocol for inducing the meiotic program is also included to produce haploid mutant strains following tetraploid genetic analysis. We discuss implication of self-fertile strains for the future of Chlamydomonas research.

Keywords

Acknowledgement

Supported by : Natural Sciences and Engineering Research Council (NSERC), Korea Carbon Concentration and Sequestration Research and Development Center (KCRC)

References

  1. Baek, K., Kim, D. H., Jeong, J., Sim, S. J., Melis, A., Kim, J. -S., Jin, E. & Bae, S. 2016. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci. Rep. 6:30620. https://doi.org/10.1038/srep30620
  2. Bellafiore, S., Ferris, P., Naver, H., Gohre, V. & Rochaix, J. -D. 2002. Loss of Albino3 leads to the specific depletion of the light-harvesting system. Plant Cell 14:2303-2314. https://doi.org/10.1105/tpc.003442
  3. Blaby, I. K., Blaby-Haas, C. E., Tourasse, N., Hom, E. F., Lopez, D., Aksoy, M., Grossman, A., Umen, J., Dutcher, S., Porter, M., King, S., Witman, G. B., Stanke, M., Harris, E. H., Goodstein, D., Grimwood, J., Schmutz, J., Vallon, O., Merchant, S. S. & Prochnik, S. 2014. The Chlamydomonas genome project: a decade on. Trends Plant Sci. 19:672-680. https://doi.org/10.1016/j.tplants.2014.05.008
  4. Campbell, A. M., Rayala, H. J. & Goodenough, U. W. 1995. The iso1 gene of Chlamydomonas is involved in sex determination. Mol. Biol. Cell 6:87-95. https://doi.org/10.1091/mbc.6.1.87
  5. Dent, R. M., Sharifi, M. N., Malnoe, A., Haglund, C., Calderon, R. H., Wakao, S. & Niyogi, K. K. 2015. Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82:337-351. https://doi.org/10.1111/tpj.12806
  6. Dutcher, S. K. 1988. Nuclear fusion-defective phenocopies in Chlamydomonas reinhardtii: mating-type functions for meiosis can act through the cytoplasm. Proc. Natl. Acad. Sci. U. S. A. 85:3946-3950. https://doi.org/10.1073/pnas.85.11.3946
  7. Ebersold, W. T. 1967. Chlamydomonas reinhardi: heterozygous diploid strains. Science 157:447-449. https://doi.org/10.1126/science.157.3787.447
  8. Ferris, P. J. & Goodenough, U. W. 1997. Mating type in Chlamydomonas is specified by mid, the minus-dominance gene. Genetics 146:859-869. https://doi.org/10.1093/genetics/146.3.859
  9. Ferris, P. J., Woessner, J. P. & Goodenough, U. W. 1996. A sex recognition glycoproteins is encoded by the plus mating-type gene fus1 of Chlamydomonas reinhardtii. Mol. Biol. Cell 7:1235-1248. https://doi.org/10.1091/mbc.7.8.1235
  10. Flint, J. & Mackay, T. F. 2009. Genetic architecture of quantitative traits in mice, flies, and humans. Genome Res. 19:723-733. https://doi.org/10.1101/gr.086660.108
  11. Gallaher, S. D., Fitz-Gibbon, S. T., Glaesener, A. G., Pellegrini, M. & Merchant, S. S. 2015. Chlamydomonas genome resource for laboratory strains reveals a mosaic of sequence variation, identifies true strain histories, and enables strain-specific studies. Plant Cell 27:2335-2352. https://doi.org/10.1105/tpc.15.00508
  12. Galloway, R. E. & Goodenough, U. W. 1985. Generic analysis of mating locus linked mutations in Chlamydomonas reinhardtii. Genetics 111:447-461. https://doi.org/10.1093/genetics/111.3.447
  13. Galloway, R. E. & Holden, L. R. 1984. Transmission and recombination of chloroplast genes in asexual crosses of Chlamydomonas reinhardii. I. Flagellar agglutination prior to fusion does not promote uniparental inheritance or affect recombination frequencies. Curr. Genet. 8:399-405. https://doi.org/10.1007/BF00433905
  14. Geng, S., De Hoff, P. & Umen, J. G. 2014. Evolution of sexes from an ancestral mating-type specification pathway. PLoS Biol. 12:e1001904. https://doi.org/10.1371/journal.pbio.1001904
  15. Geng, S., Miyagi, A. & Umen, J. G. 2018. Evolutionary divergence of the sex-determining gene MID uncoupled from the transition to anisogamy in volvocine algae. Development 145:dev162537. https://doi.org/10.1242/dev.162537
  16. Gonzalez-Ballester, D., Pootakham, W., Mus, F., Yang, W., Catalanotti, C., Magneschi, L., de Montaigu, A., Higuera, J. J., Prior, M., Galvan, A., Fernandez, E. & Grossman, A. R. 2011. Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants. Plant Methods 7:24. https://doi.org/10.1186/1746-4811-7-24
  17. Greiner, A., Kelterborn, S., Evers, H., Kreimer, G., Sizova, I. & Hegemann, P. 2017. Targeting of photoreceptor genes in Chlamydomonas reinhardtii via zinc-finger nucleases and CRISPR/Cas9. Plant Cell 29:2498-2518. https://doi.org/10.1105/tpc.17.00659
  18. Harris, E. H. 1989. The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic Press, San Diego, CA, 780 pp.
  19. Lee, J. -H., Lin, H., Joo, S. & Goodenough, U. 2008. Early sexual origins of homeoprotein heterodimerization and evolution of the plant KNOX/BELL family. Cell 133:829-840. https://doi.org/10.1016/j.cell.2008.04.028
  20. Lewin, R. A. 1951. Isolation of sexual strains of Chlamydomonas. J. Gen. Microbiol. 5:926-929. https://doi.org/10.1099/00221287-5-5-926
  21. Li, X., Zhang, R., Patena, W., Gang, S. S., Blum, S. R., Ivanova, N., Yue, R., Robertson, J. M., Lefebvre, P. A., Fitz-Gibbon, S. T., Grossman, A. R. & Jonikas, M. C. 2016. An indexed, mapped mutant library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii. Plant Cell 28:367-387. https://doi.org/10.1105/tpc.15.00465
  22. Lin, H. 2006. Characterization of two minus-specific genes, MID and MTD1, and a sex-limited mutant, ISO1, involved in Chlamydomonas gametogenesis. Ph.D. dissertation, Washington University, St. Louis, MO, USA, 190 pp.
  23. Lin, H., Cliften, P. F. & Dutcher, S. K. 2018. MAPINS, a highly efficient detection method that identifies insertional mutations and complex DNA rearrangements. Plant Physiol. 178:1436-1447. https://doi.org/10.1104/pp.18.00474
  24. Lin, H. & Goodenough, U. W. 2007. Gametogenesis in the Chlamydomonas reinhardtii minus mating type is controlled by two genes, MID and MTD1. Genetics 176:913-925. https://doi.org/10.1534/genetics.106.066167
  25. Matagne, R. F., Deltour, R. & Ledoux, L. 1979. Somatic fusion between cell wall mutants of Chlamydomonas reinhardi. Nature 278:344-346. https://doi.org/10.1038/278344a0
  26. Matsunaga, S., Katagiri, Y., Nagashima, Y., Sugiyama, T., Hasegawa, J., Hayashi, K. & Sakamoto, T. 2013. New insights into the dynamics of plant cell nuclei and chromosomes. Int. Rev. Cell Mol. Biol. 305:253-301. https://doi.org/10.1016/B978-0-12-407695-2.00006-8
  27. Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., Terry, A., Salamov, A., Fritz-Laylin, L. K., Maréchal-Drouard, L., Marshall, W. F., Qu, L. -H., Nelson, D. R., Sanderfoot, A. A., Spalding, M. H., Kapitonov, V. V., Ren, Q., Ferris, P., Lindquist, E., Shapiro, H., Lucas, S. M., Grimwood, J., Schmutz, J., Cardol, P., Cerutti, H., Chanfreau, G., Chen, C. -L., Cognat, V., Croft, M. T., Dent, R., Dutcher, S., Fernandez, E., Fukuzawa, H., Gonzalez-Ballester, D., Gonzalez-Halphen, D., Hallmann, A., Hanikenne, M., Hippler, M., Inwood, W., Jabbari, K., Kalanon, M., Kuras, R., Lefebvre, P. A., Lemaire, S. D., Lobanov, A. V., Lohr, M., Manuell, A., Meier, I., Mets, L., Mittag, M., Mittelmeier, T., Moroney, J. V., Moseley, J., Napoli, C., Nedelcu, A. M., Niyogi, K., Novoselov, S. V., Paulsen, I. T., Pazour, G., Purton, S., Ral, J. P., Riano-Pachón, D. M., Riekhof, W., Rymarquis, L., Schroda, M., Stern, D., Umen, J., Willows, R., Wilson, N., Zimmer, S. L., Allmer, J., Balk, J., Bisova, K., Chen, C. J., Elias, M., Gendler, K., Hauser, C., Lamb, M. R., Ledford, H., Long, J. C., Minagawa, J., Page, M. D., Pan, J., Pootakham, W., Roje, S., Rose, A., Stahlberg, E., Terauchi, A. M., Yang, P., Ball, S., Bowler, C., Dieckmann, C. L., Gladyshev, V. N., Green, P., Jorgensen, R., Mayfield, S., Mueller-Roeber, B., Rajamani, S., Sayre, R. T., Brokstein, P., Dubchak, I., Goodstein, D., Hornick, L., Huang, Y. W., Jhaveri, J., Luo, Y., Martínez, D., Ngau, W. C., Otillar, B., Poliakov, A., Porter, A., Szajkowski, L., Werner, G., Zhou, K., Grigoriev, I. V., Rokhsar, D. S. & Grossman, A. R. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245-250. https://doi.org/10.1126/science.1143609
  28. Molnar, M. & Sipiczki, M. 1993. Polyploidy in the haplontic yeast Schizosaccharomyces pombe: construction and analysis of strains. Curr. Genet. 24:45-52. https://doi.org/10.1007/BF00324664
  29. Palombella, A. L. & Dutcher, S. K. 1998. Identification of the gene encoding the tryptophan synthase ${\beta}$-subunit from Chlamydomonas reinhardtii. Plant Physiol. 117:455-464. https://doi.org/10.1104/pp.117.2.455
  30. Pan, X., Yuan, D. S., Xiang, D., Wang, X., Sookhai-Mahadeo, S., Bader, J. S., Hieter, P., Spencer, F. & Boeke, J. D. 2004. A robust toolkit for functional profiling of the yeast genome. Mol. Cell 16:487-496. https://doi.org/10.1016/j.molcel.2004.09.035
  31. Romero-Campero, F. J., Perez-Hurtado, I., Lucas-Reina, E., Romero, J. M. & Valverde, F. 2016. ChlamyNET: a Chlamydomonas gene co-expression network reveals global properties of the transcriptome and the early setup of key co-expression patterns in the green lineage. BMC Genomics 17:227. https://doi.org/10.1186/s12864-016-2564-y
  32. Shin, S. -E., Lim, J. -M., Koh, H. G., Kim, E. K., Kang, N. K., Jeon, S., Kwon, S., Shin, W. -S., Lee, B., Hwangbo, K., Kim, J., Ye, S. H., Yun, J. -Y., Seo, H., Oh, H. -M., Kim, K. -J., Kim, J. -S., Jeong, W. -J., Chang, Y. K. & Jeong, B. -R. 2016. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci. Rep. 6:27810. https://doi.org/10.1038/srep27810
  33. VanWinkle-Swift, K. P. & Bauer, J. C. 1982. Self-sterile and maturation-defective mutants of the homothallic alga, Chlamydomonas monoica (Chlorophyceae). J. Phycol. 18:312-317. https://doi.org/10.1111/j.1529-8817.1982.tb03189.x
  34. Zhao, H., Lu, M., Singh, R. & Snell, W. J. 2001. Ectopic expression of a Chlamydomonas mt+-specific homeodomain protein in mt- gametes initiates zygote development without gamete fusion. Genes Dev. 15:2767-2777. https://doi.org/10.1101/gad.919501

Cited by

  1. TALE homeobox heterodimer GSM1/GSP1 is a molecular switch that prevents unwarranted genetic recombination in Chlamydomonas vol.100, pp.5, 2019, https://doi.org/10.1111/tpj.14486
  2. Switching it up: algal insights into sexual transitions vol.34, pp.4, 2019, https://doi.org/10.1007/s00497-021-00417-0