DOI QR코드

DOI QR Code

Thermal and light impacts on the early growth stages of the kelp Saccharina angustissima (Laminariales, Phaeophyceae)

  • Augyte, Simona (Department of Ecology & Evolutionary Biology, The University of Connecticut) ;
  • Yarish, Charles (Department of Ecology & Evolutionary Biology, The University of Connecticut) ;
  • Neefus, Christopher D. (Department of Biological Sciences, The University of New Hampshire)
  • Received : 2018.12.11
  • Accepted : 2019.05.12
  • Published : 2019.06.15

Abstract

Anthropogenic disturbances, including coastal habitat modification and climate change are threatening the stability of kelp beds, one of the most diverse and productive marine ecosystems. To test the effect of temperature and irradiance on the microscopic gametophyte and juvenile sporophyte stages of the rare kelp, Saccharina angustissima, from Casco Bay, Maine, USA, we carried out two sets of experiments using a temperature gradient table. The first set of experiments combined temperatures between $7-18^{\circ}C$ with irradiance at 20, 40, and $80{\mu}mol\;photons\;m^{-2}\;s^{-1}$. The second set combined temperatures of $3-13^{\circ}C$ with irradiance of 10, 100, and $200{\mu}mol\;photons\;m^{-2}\;s^{-1}$. Over two separate 4-week trials, in 2014 and again in 2015, we monitored gametogenesis, the early growth stages of the gametophytes, and early sporophyte development of this kelp. Gametophytes grew best at temperatures of $8-13^{\circ}C$ at the lowest irradiance of $10-{\mu}mol\;photons\;m^{-2}\;s^{-1}$. Light had a significant effect on both male and female gametophyte growth only at the higher temperatures. Temperatures of $8-15^{\circ}C$ and irradiance levels of $10-100{\mu}mol\;photons\;m^{-2}\;s^{-1}$ were conditions for the highest sporophyte growth. Sporophyte and male gametophyte growth was reduced at both temperature extremes-the hottest and coldest temperatures tested. S. angustissima is a unique kelp species known only from a very narrow geographic region along the coast of Maine, USA. The coupling of global warming with high light intensity effects might pose stress on the early life-history stages of this kelp, although, as an intertidal species, it could also be better adapted to temperature and light extremes than its subtidal counterpart, Saccharina latissima.

Keywords

Acknowledgement

Supported by : The Maine Aquaculture Innovation Center

References

  1. Abramoff, M. D., Magalhaes, P. J. & Ram, S. J. 2004. Image processing with ImageJ. Biophotonics Int. 11:36-42.
  2. Adey, W. H. & Steneck, R. S. 2001. Thermogeography over time creates biogeographic regions: a temperature/scale/ time-integrated model and an abundance-weighted test for benthic marine algae. J. Phycol. 37:677-698. https://doi.org/10.1046/j.1529-8817.2001.00176.x
  3. Augyte, S., Lewis, L., Lin, S., Neefus, C. D. & Yarish, C. 2018. Speciation in the exposed intertidal zone: the case of Saccharina angustissima comb. nov. & stat. nov. (Laminariales, Phaeophyceae). Phycologia 57:100-112. https://doi.org/10.2216/17-40.1
  4. Bartsch, I., Vogt, J., Pehlke, C. & Hanelt, D. 2013. Prevailing sea surface temperatures inhibit summer reproduction of the kelp Laminaria digitata at Helgoland (North Sea). J. Phycol. 49:1061-1073. https://doi.org/10.1111/jpy.12125
  5. Bartsch, I., Wiencke, C., Bischof, K., Buchholz, C. M., Buck, B. H., Eggert, A., Feuerpfeil, P., Hanelt, D., Jacobsen, S., Karez, R., Karsten, U., Molis, M., Roleda, M. Y., Schubert, H., Schumann, R., Valentin, K., Weinberger, F. & Wiese, J. 2008. The genus Laminaria sensu lato: recent insights and developments. Eur. J. Phycol. 43:1-86. https://doi.org/10.1080/09670260701711376
  6. Colvard, N. B., Carrington, E. & Helmuth, B. 2014. Temperature- dependent photosynthesis in the intertidal alga Fucus gardneri and sensitivity to ongoing climate change. J. Exp. Mar. Biol. Ecol. 458:6-12. https://doi.org/10.1016/j.jembe.2014.05.001
  7. Diez, I., Muguerza, N., Santolaria, A., Ganzedo, U. & Gorostiaga, J. M. 2012. Seaweed assemblage changes in the eastern Cantabrian Sea and their potential relationship to climate change. Estuar. Coast. Shelf Sci. 99:108-120. https://doi.org/10.1016/j.ecss.2011.12.027
  8. Duggins, D. O., Gomez-Buckley, M. C., Buckley, R. M., Lowe, A. T., Galloway, A. W. E. & Dethier, M. N. 2016. Islands in the stream: kelp detritus as faunal magnets. Mar. Biol. 163:17. https://doi.org/10.1007/s00227-015-2781-y
  9. Egan, B., Vlasto, A. & Yarish, C. 1989. Seasonal acclimation to temperature and light in Laminaria longicruris de la Pyl. (Phaeophyta). J. Exp. Mar. Biol. Ecol. 129:1-16. https://doi.org/10.1016/0022-0981(89)90059-2
  10. Fernandez, C. 2011. The retreat of large brown seaweeds on the north coast of Spain: the case of Sacchorhiza polyschides. Eur. J. Phycol. 46:352-360. https://doi.org/10.1080/09670262.2011.617840
  11. Fortes, M. D. & Lüning, K. 1980. Growth rates of North Sea macroalgae in relation to temperature, irradiance and photoperiod. Helgol. Meeresunters. 34:15-29. https://doi.org/10.1007/bf01983538
  12. Harley, C. D. G., Anderson, K. M., Demes, K. W., Jorve, J. P., Kordas, R. L., Coyle, T. A. & Graham, M. H. 2012. Effects of climate change on global seaweed communities. J. Phycol. 48:1064-1078. https://doi.org/10.1111/j.1529-8817.2012.01224.x
  13. Hoffmann, A. J. & Santelices, B. 1991. Banks of algal microscopic form: hypothesis of their functioning and comparisons with seed banks. Mar. Ecol. Prog. Ser. 79:185-194. https://doi.org/10.3354/meps079185
  14. Kain, J. 1969. The biology of Laminaria hyperborea. V. Comparison with early stages of competitors. J. Mar. Biol. Assoc. UK. 49:455-473. https://doi.org/10.1017/S0025315400036031
  15. Kim, J. K., Kraemer, G. P. & Yarish, C. 2015. Use of sugar kelp aquaculture in Long Island Sound and the Bronx River Estuary for nutrient extraction. Mar. Ecol. Prog. Ser. 531:155-166. https://doi.org/10.3354/meps11331
  16. Kim, J. K., Yarish, C., Hwang, E. K., Park, M. & Kim, Y. 2017. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae 32:1-13. https://doi.org/10.4490/algae.2017.32.3.3
  17. Krumhansl, K. A., Okamoto, D. K., Rassweiler, A., Novak, M., Bolton, J. J., Cavanaugh, K. C., Connell, S. D., Johnson, C. R., Konar, B., Ling, S. D., Micheli, F., Norderhaug, K. M., Pérez-Matus, A., Sousa-Pinto, I., Reed, D. C., Salomon, A. K., Shears, N. T., Wernberg, T., Anderson, R. J., Barrett, N. S., Buschmann, A. H., Carr, M. H., Caselle, J. E., Derrien- Courtel, S., Edgar, G. J., Edwards, M., Estes, J. A., Goodwin, C., Kenner, M. C., Kushner, D. J., Moy, F. E., Nunn, J., Steneck, R. S., Vasquez, J., Watson, J., Witman, J. D. & Byrnes, J. E. K. 2016. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. U. S. A. 113:13785-13790. https://doi.org/10.1073/pnas.1606102113
  18. Krumhansl, K. A. & Scheibling, R. E. 2012. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. 467:281-302. https://doi.org/10.3354/meps09940
  19. Lee, J. A. & Brinkhuis, B. H. 1988. Seasonal light and temperature interaction effects on development of Laminaria saccharina (Phaeophyta) gametophytes and juvenile sporophytes. J. Phycol. 24:181-191. https://doi.org/10.1111/j.1529-8817.1988.tb04232.x
  20. Lesser, M. P. 2016. Climate change stressors cause metabolic depression in the blue mussel, Mytilus edulis, from the Gulf of Maine. Limnol. Oceanogr. 61:1705-1717. https://doi.org/10.1002/lno.10326
  21. Lind, A. C. & Konar, B. 2017. Effects of abiotic stressors on kelp early life-history stages. Algae 32:223-233. https://doi.org/10.4490/algae.2017.32.8.7
  22. Luning, K. 1990. Seaweeds: their environment, biogeography, and ecophysiology. John Wiley & Sons, Inc., New York, 527 pp.
  23. Mathieson, A. C. & Dawes, C. J. 2017. Seaweeds of the Northwest Atlantic. University of Massachusetts Press, Amherst, MA, 798 pp.
  24. Mathieson, C., Hehre, E. J., Dawes, C. J. & Neefus, C. D. 2008. An historical comparison of seaweed populations from Casco Bay, Maine. Rhodora 110:1-102. https://doi.org/10.3119/06-23.1
  25. Mills, K. E., Pershing, A. J., Brown, C. J., Chen, Y., Chiang, F. -S., Holland, D. S., Lehuta, S., Nye, J. A., Sun, J. C., Thomas, A. C. & Wahle, R. A. 2013. Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 26:191-195.
  26. Moy, F. E. & Christie, H. 2012. Large-scale shift from sugar kelp (Saccharina latissima) to ephemeral algae along the south and west coast of Norway. Mar. Biol. Res. 8:309-321. https://doi.org/10.1080/17451000.2011.637561
  27. Muller, R., Wiencke, C. & Bischof, K. 2008. Interactive effects of UV radiation and temperature on microstages of Laminariales (Phaeophyceae) from the Arctic and North Sea. Clim. Res. 37:203-213. https://doi.org/10.3354/cr00762
  28. Park, J., Kim, J. K., Kong, J. -A., Depuydt, S., Brown, M. T. & Han, T. 2017. Implications of rising temperatures for gametophyte performance of two kelp species from Arctic waters. Bot. Mar. 60:39-48. https://doi.org/10.1515/bot-2016-0103
  29. Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37:637-669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
  30. Pereira, T. R., Engelen, A. H., Pearson, G. A., Serrao, E. A., Destombe, C. & Valero, M. 2011. Temperature effects on the microscopic haploid stage development of Laminaria ochroleuca and Saccorhiza polyschides, kelps with contrasting life histories. Cah. Biol. Mar. 52:395-403.
  31. Pershing, A. J., Alexander, M. A., Hernandez, C. M., Kerr, L. A., Le Bris, A., Mills, K. A., Nye, J. A., Record, N. R., Scannell, H. A., Scott, J. D., Sherwood, G. D. & Thomas, A. C. 2015. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350:809-812. https://doi.org/10.1126/science.aac9819
  32. Philibert, J. P. 1990. A study of the morphology, phenology, and ecology of Laminaria saccharina forma angustissima. M.S. thesis, University of Massachusetts, Amherst, MA, 76 pp.
  33. Price, T. D., Qvarnstrom, A. & Irwin, D. E. 2003. The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. Lond. B 270:1433-1440. https://doi.org/10.1098/rspb.2003.2372
  34. Provasoli, L. 1968. Media and prospects for the cultivation of marine algae. In Watanabe, A. & Hattori, A. (Eds.) Cultures and Collections of Algae, Proc. U.S. Japan Conf., Japanese Society Plant Physiology, Hakone, pp. 63-75.
  35. R Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  36. Redmond, S. 2013. Effects of increasing temperature and ocean acidification on the microstages of two populations of Saccharina latissima in the Northwest Atlantic. M.S. thesis, University of Connecticut, Storrs, CT, 51 pp.
  37. Reed, D. C., Amsler, C. D. & Ebeling, A. W. 1992. Dispersal in kelps: factors affecting spore swimming and competency. Ecology 73:1577-1585. https://doi.org/10.2307/1940011
  38. Rogelj, J., Meinshausen, M. & Knutti, R. 2012. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Chang. 2:248-253. https://doi.org/10.1038/nclimate1385
  39. Rose, J. M., Bricker, S. B., Deonarine, S., Ferreira, J. G., Getchis, T., Grant, J., Kim, J. K., Krumholz, J. S., Kraemer, G. P., Stephenson, K., Wikfors, G. H. & Yarish, C. 2015. Nutrient bioextraction. In Meyers, R. A. (Ed.) Encyclopedia of Sustainability Science and Technology. Springer, New York, pp. 1-33.
  40. Schiel, D. R. & Foster, M. S. 2006. The population biology of large brown seaweeds: ecological consequences of multiphase life histories in dynamic coastal environments. Annu. Rev. Ecol. Evol. S. 37:343-372. https://doi.org/10.1146/annurev.ecolsys.37.091305.110251
  41. Smale, D. A., Burrows, M. T., Moore, P., O'Connor, N. & Hawkins, S. J. 2013. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol. Evol. 3:4016-4038. https://doi.org/10.1002/ece3.774
  42. Steneck, R. S., Graham, M. H., Bourque, B. J., Corbett, D., Erlandson, J. M., Estes, J. A. & Tegner, M. J. 2002. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv. 29:436-459. https://doi.org/10.1017/S0376892902000322
  43. tom Dieck (Bartsch), I. 1992. North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridization experiments and temperature responses. Phycologia 31:147-163. https://doi.org/10.2216/i0031-8884-31-2-147.1
  44. Voerman, S. E., Llera, E. & Rico, J. M. 2013. Climate driven changes in subtidal kelp forest communities in NW Spain. Mar. Environ. Res. 90:119-127. https://doi.org/10.1016/j.marenvres.2013.06.006
  45. Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., Smith, A. G., Camine, M. E. & Brawley, S. H. 2017. Algae as nutritional and functional food sources: revisiting our understanding. J. Appl. Phycol. 29:949-982. https://doi.org/10.1007/s10811-016-0974-5
  46. Wernberg, T., Bennett, S., Babcock, R. C., de Bettignies, T., Cure, K., Depczynski, M., Dufois, F., Fromont, J., Fulton, C. J., Hovey, R. K., Harvey, E. S., Holmes, T. H., Kendrick, G. A., Radford, B., Santana-Garcon, J., Saunders, B. J., Smale, D. A., Thomsen, M. S., Tuckett, C. A., Tuya, F., Vanderklift, M. A. & Wilson, S. 2016. Climate-driven regime shift of a temperate marine ecosystem. Science 353:169-172. https://doi.org/10.1126/science.aad8745
  47. Wernberg, T., Thomsen, M. S., Tuya, F., Kendrick, G. A., Staehr, P. A. & Toohey, B. D. 2010. Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecol. Lett. 13:685-694. https://doi.org/10.1111/j.1461-0248.2010.01466.x
  48. Wiencke, C. & Fischer, G. 1990. Growth and stable carbon isotope composition of cold-water macroalgae in relation to light and temperature. Mar. Ecol. Prog. Ser. 65:283-292. https://doi.org/10.3354/meps065283
  49. Yarish, C., Penniman, C. A. & Egan, B. 1990. Growth and reproductive responses of Laminaria longicruris (Laminariales, Phaeophyta) to nutrient enrichment. Hydrobiologia 204/205:505-511. https://doi.org/10.1007/BF00040278
  50. Zhang, L., Cui, C., Li, X., Zhang, Z., Luo, S., Liang, G., Liu, Y. & Yang, G. 2013. Effect of temperature on the development of Saccharina japonica gametophytes. J. Appl. Phycol. 23:261-267.

Cited by

  1. Genotype–Environment mismatch of kelp forests under climate change vol.30, pp.15, 2019, https://doi.org/10.1111/mec.15993
  2. Conditions for staggering and delaying outplantings of the kelps SACCHARINA LATISSIMA and ALARIA MARGINATA for mariculture vol.52, pp.5, 2021, https://doi.org/10.1111/jwas.12846