DOI QR코드

DOI QR Code

Comparing the impacts of four ENSO events on giant kelp (Macrocystis pyrifera) in the northeast Pacific Ocean

  • Edwards, Matthew S. (Department of Biology, San Diego State University)
  • Received : 2019.03.29
  • Accepted : 2019.05.04
  • Published : 2019.06.15

Abstract

The 1982-83, 1986-87, 1991-92, and 1997-98 El $Ni{\tilde{n}}o$-Southern Oscillations (ENSOs) were compared with regards to their strength and timing in the tropical Pacific Ocean, changes in ocean temperature and wave intensity, and their impacts to giant kelp populations in the Northeast Pacific. The Multivariate ENSO Index, oceanographic data, and kelp abundance data all show that the 1982-83 and 1997-98 ENSOs were stronger and resulted in greater losses of giant kelp than the 1986-87 and 1991-92 ENSOs, but that the 1982-83 and 1997-98 ENSOs differed with regard to the arrival of destructive waves relative to when the ocean waters warmed and cooled. The 1982-83 ENSO was more destructive to the giant kelp populations in central California, USA than the 1997-98 ENSO, but the 1997-98 ENSO was more destructive to the giant kelp in southern California. These events appeared similarly destructive to the populations in Baja California, Mexico. Recovery of the kelp populations also varied among the two strong ENSOs due to the ocean conditions following each ENSO. In southern and Baja California, recovery was slow following the 1982-83 ENSO, while recovery was more rapid following the 1997-98 ENSO. Unfortunately, the monitoring programs used to evaluate the kelp populations stopped shortly after the 1997-98 ENSO, resulting in a lack of data for comparisons with the more recent weak ENSOs that occurred between 2002 and 2010, or with the strong ENSO that occurred in 2014-2016. This supports the need for continued long-term monitoring programs to better understand how climate anomalies impact coastal ecosystems.

Keywords

Acknowledgement

Supported by : National Science Foundation

References

  1. Barber, R. T. & Chavez, F. P. 1983. Biological consequences of El Nino. Science 222:1203-1210. https://doi.org/10.1126/science.222.4629.1203
  2. Bell, T. W., Cavanaugh, K. C., Reed, D. C. & Siegel, D. A. 2015. Geographical variability in the controls of giant kelp biomass dynamics. J. Biogeogr. 42:2010-2021. https://doi.org/10.1111/jbi.12550
  3. Carleton, T. J. & MacLellan, P. 1994. Woody vegetation responses to fire versus clear-cutting logging: a comparative survey in the central Canadian boreal forest. Ecoscience 1:141-152. https://doi.org/10.1080/11956860.1994.11682238
  4. Carpenter, S. R. 1998. The need for large-scale experiments to assess and predict the response of ecosystems to perturbation. In Pace, M. L. & Groffman, P. M. (Eds.) Successes, Limitations, and Frontiers in Ecosystem Science. Springer-Verlag, New York, pp. 287-312.
  5. Connell, J. H., Hughes, T. P. & Wallace, C. C. 1997. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr. 67:461-488. https://doi.org/10.1890/0012-9615(1997)067[0461:AYSOCA]2.0.CO;2
  6. Davey, M. K. & Anderson, D. L. T. 1998. A comparison of the 1997/98 El Nino with other such events. Weather 53:295-302. https://doi.org/10.1002/j.1477-8696.1998.tb06404.x
  7. Dayton, P. K. & Tegner, M. J. 1984. Catastrophic storms, El Nino, and patch stability in a southern California kelp community. Science 224:283-285. https://doi.org/10.1126/science.224.4646.283
  8. Dayton, P. K. & Tegner, M. J. 1990. Bottoms beneath troubled waters: benthic impacts of the 1982-1984 El Nino in the temperate zone. In Glynn, P. W. (Ed.) Global Ecological Consequences of the 1982-83 El Nino-Southern Oscillation. Elsevier Science Publishers, New York, pp. 433-472.
  9. Dayton, P. K., Tegner, M. J., Parnell, P. E. & Edwards, P. B. 1992. Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecol. Monogr. 62:421-445. https://doi.org/10.2307/2937118
  10. Denny, M. W. 1988. Biology and the mechanics of the waveswept environment. Princeton University Press, Princeton, NJ, 344 pp.
  11. De Vogelaere, A. P. & Foster, M. S. 1994. Damage and recovery in intertidal Fucus gardneri assemblages following the 'Exxon Valdez' oil spill. Mar. Ecol. Prog. Ser. 106:263-271. https://doi.org/10.3354/meps106263
  12. Edwards, M. S. 2004. Estimating scale-dependency in disturbance impacts: El Ninos and giant kelp forests in the Northeast Pacific. Oecologia 138:436-447. https://doi.org/10.1007/s00442-003-1452-8
  13. Edwards, M. S. & Estes, J. A. 2006. Catastrophe, recovery and range limitation in NE Pacific kelp forests: a large-scale perspective. Mar. Ecol. Prog. Ser. 320:79-87. https://doi.org/10.3354/meps320079
  14. Edwards, M. S. & Hernandez-Carmona, G. 2005. Delayed recovery of giant kelp near its southern range limit in the North Pacific following El Nino. Mar. Biol. 147:273-279. https://doi.org/10.1007/s00227-004-1548-7
  15. Foster, M. S. & Schiel, D. R. 1992. Zonation, El Nino disturbance, and the dynamics of subtidal vegetation along a 30 m depth gradient in two giant kelp forests. Proc. 2nd Int. Temp. Reef Symp. 2:151-162.
  16. Gerard, V. A. 1982. Growth and utilization of internal nitrogen reserves by the giant kelp Macrocystis pyrifera in a low-nitrogen environment. Mar. Biol. 66:27-35. https://doi.org/10.1007/BF00397251
  17. Glynn, P. W. 1988. El Nino-Southern Oscillation 1982-1983: nearshore population, community, and ecosystem responses. Ann. Rev. Ecol. Syst. 19:309-346. https://doi.org/10.1146/annurev.es.19.110188.001521
  18. Graham, M. H., Harrold, C., Lisin, S., Light, K., Watanabe, J. M. & Foster, M. S. 1997. Population dynamics of giant kelp Macrocystis pyrifera along a wave exposure gradient. Mar. Ecol. Prog. Ser. 148:269-279. https://doi.org/10.3354/meps148269
  19. Hayward, T. L. 2000. El Nino 1997-98 in the coastal waters of southern Califfornia: a timeline of events. CalCOFI Rep. 41:98-116.
  20. Hernandez-Carmona, G., Robledo, D. & Serviere-Zaragoza, E. 2001. Effect of nutrient availability on Macrocystis pyrifera recruitment survival near its southern limit off Baja California. Bot. Mar. 44:221-229. https://doi.org/10.1515/BOT.2001.029
  21. Jackson, G. A. 1977. Nutrients and production of giant kelp, Macrocystis pyrifera, off southern California. Limnol. Oceanogr. 22:979-995. https://doi.org/10.4319/lo.1977.22.6.0979
  22. Keeley, J. E. 1987. Role of fire in seed germination of woody taxa in California Chaparral. Ecology 68:434-443. https://doi.org/10.2307/1939275
  23. Ladah, L. B. & Zertuche-Gonzalez, J. A. 2004. Giant kelp (Macrocystis pyrifera) survival in deep water (25-40 m) during El Nino of 1997-1998 in Baja California, Mexico. Bot. Mar. 47:367-372. https://doi.org/10.1515/BOT.2004.054
  24. Lind, A. C. & Konar, B. 2017. Effects of abiotic stressors on kelp early life-history stages. Algae 32:223-233. https://doi.org/10.4490/algae.2017.32.8.7
  25. Rodbell, D. T., Seltzer, G. O., Anderson, D. M., Abbott, M. B., Enfield, D. B. & Newman, J. H. 1999. A -15,000-year record of El Nino-driven alluviation in southwestern Ecuador. Science 283:516-520. https://doi.org/10.1126/science.283.5401.516
  26. Seymour, R. J., Tegner, M. J., Dayton, P. K. & Parnell, P. E. 1989. Storm wave induced mortality of giant kelp, Macrocystis pyrifera, in southern California. Estuar. Coast. Shelf Sci. 28:277-292. https://doi.org/10.1016/0272-7714(89)90018-8
  27. Tegner, M. J. & Dayton, P. K. 1987. El Nino effects on southern California kelp forest communities. Adv. Ecol. Res. 17:243-279. https://doi.org/10.1016/S0065-2504(08)60247-0
  28. Tegner, M. J., Dayton, P. K., Edwards, P. B. & Riser, K. L. 1997. Large-scale, low-frequency oceanographic effects on kelp forest successions: a tale of two cohorts. Mar. Ecol. Prog. Ser. 146:117-134. https://doi.org/10.3354/meps146117
  29. Turner, M. G. & Dale, V. H. 1998. Comparing large, infrequent disturbances: what have we learned? Ecosystems 1:493-496. https://doi.org/10.1007/s100219900045
  30. Tyler, C. M. 1996. Relative importance of factors contributing to postfire seedling establishment in maritime chaparral. Ecology 77:2182-2195. https://doi.org/10.2307/2265711
  31. Wolter, K. & Timlin, M. S. 1998. Measuring the strength of ENSO events: how does the 1997/98 rank? Weather 53:315-324. https://doi.org/10.1002/j.1477-8696.1998.tb06408.x
  32. Wooster, W. S. & Fluharty, D. L. 1985. El Nino North. Seattle: Washington Sea Grant Program.
  33. Zimmerman, R. C. & Kremer, J. N. 1984. Episodic nutrient supply to a kelp forest ecosystem in Southern California. J. Mar. Res. 42:591-604. https://doi.org/10.1357/002224084788506031
  34. Zimmerman, R. C. & Robertson, D. L. 1985. Effects of El Nino on local hydrography and growth of the giant kelp, Macrocystis pyrifera, at Santa Catalina Island, California. Limnol. Oceanogr. 30:1298-1302. https://doi.org/10.4319/lo.1985.30.6.1298

Cited by

  1. Impacts of the non-native alga Sargassum horneri on benthic community production in a California kelp forest vol.637, 2019, https://doi.org/10.3354/meps13231
  2. Species-specific biomass drives macroalgal benthic primary production on temperate rocky reefs vol.35, pp.3, 2020, https://doi.org/10.4490/algae.2020.35.8.19
  3. Geographic variation in responses of kelp forest communities of the California Current to recent climatic changes vol.26, pp.11, 2020, https://doi.org/10.1111/gcb.15273
  4. Simulating the Trajectory and Biomass Growth of Free-Floating Macroalgal Cultivation Platforms along the U.S. West Coast vol.8, pp.11, 2019, https://doi.org/10.3390/jmse8110938
  5. Mechanisms leading to recruitment inhibition of giant kelp Macrocystis pyrifera by an understory alga vol.657, 2019, https://doi.org/10.3354/meps13550
  6. Biodiversity loss leads to reductions in community‐wide trophic complexity vol.12, pp.2, 2019, https://doi.org/10.1002/ecs2.3361
  7. Thermal Tolerance May Slow, But Not Prevent, the Spread of Sargassum horneri (Phaeophyceae) along the California, USA and Baja California, MEX Coastline vol.57, pp.3, 2019, https://doi.org/10.1111/jpy.13148