DOI QR코드

DOI QR Code

Viator vitreocola gen. et sp. nov. (Stylonematophyceae), a new red alga on drift glass debris in Oregon and Washington, USA

  • Hansen, Gayle I. (Oregon State University, HMSC-EPA) ;
  • West, John A. (School of BioSciences, University of Melbourne) ;
  • Yoon, Hwan Su (Department of Biological Sciences, Sungkyunkwan University) ;
  • Goodman, Christopher D. (School of BioSciences, University of Melbourne) ;
  • Goer, Susan Loiseaux-de (11 Rue des Moguerou) ;
  • Zuccarello, Giuseppe C. (School of Biological Sciences, Victoria University of Wellington)
  • Received : 2019.02.19
  • Accepted : 2019.05.20
  • Published : 2019.06.15

Abstract

A new encrusting red alga was found growing abundantly on glass debris items that drifted ashore along the coasts of Oregon and Washington. These included discarded fluorescent tubes, incandescent light bulbs, capped liquor bottles, and ball-shaped fishing-net floats. Field collections and unialgal cultures of the alga revealed that it consisted of two morphological phases: a young loosely aggregated turf and a mature consolidated mucilaginous crust. The turf phase consisted of a basal layer of globose cells that produced erect, rarely branched, uniseriate to multiseriate filaments up to $500{\mu}m$ long with closely spaced cells lacking pit-plugs. These filaments expanded in size from their bases to their tips and released single cells as spores. At maturity, a second phase of growth occurred that produced a consolidated crust, up to $370{\mu}m$ thick. It consisted of a basal layer of small, tightly appressed ellipsoidal-to-elongate cells that generated a mucilaginous perithallial matrix containing a second type of filament with irregularly spaced cells often undergoing binary division. At the matrix surface, the original filaments continued to grow and release spores but often also eroded. Individual cells, examined using confocal microscopy and SYBR Green staining, were found to contain a central nucleus, a single highly lobed peripheral chloroplast without a pyrenoid, and numerous chloroplast nucleoids. Morphological data from field and culture isolates and molecular data (rbcL, psbA, and SSU) show that this alga is a new genus and species which we name Viator vitreocola, "a traveller on glass."

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Aboal, M., Chapuis, I., Paiano, M., Sánchez, P., West, J. A., Whitton, B. A. & Necchi, O. Jr. 2018. Diversity of Chroothece (Rhodophyta, Stylonematales) including two new species. Eur. J. Phycol. 53:189-197. https://doi.org/10.1080/09670262.2017.1402374
  2. Aboal, M., García-Fernández, M. E., Roldán, M. & Whitton, B. A. 2014. Ecology, morphology and physiology of Chroothece richteriana (Rhodophyta, Stylonematophyceae) in Darthe highly calcareous Río Chícamo, south-east Spain. Eur. J. Phycol. 49:83-96. https://doi.org/10.1080/09670262.2014.893018
  3. Andersen, R. A. 2005. Algal culturing techniques. Elsevier, Amsterdam, 578 pp.
  4. Broom, J. E., Jones, W. A., Hill, D. F., Knight, G. A. & Nelson, W. A. 1999. Species recognition in New Zealand Porphyra using 18S rDNA sequencing. J. Appl. Phycol. 11:421-428. https://doi.org/10.1023/A:1008162825908
  5. Cabrera, J. M., Stortz, C. A. & Rodríguez, M. C. 2014. A sulfated galactan from the mucilaginous sheath of the red filamentous alga Chroodactylon ornatum (Stylonematophyceae, Rhodophyta). J. Appl. Phycol. 26:1801-1811. https://doi.org/10.1007/s10811-014-0236-3
  6. Carlton, J. T. 1996. Biological invasions and cryptogenic species. Ecology 77:1653-1655. https://doi.org/10.2307/2265767
  7. Carlton, J. T., Chapman, J. W., Geller, J. B., Miller, J. A., Carlton, D. A., McCuller, M. I., Treneman, N. C., Steves, B. P. & Ruiz, G. M. 2017. Tsunami-driven rafting: transoceanic species dispersal and implications for marine biogeography. Science 357:1402-1406. https://doi.org/10.1126/science.aao1498
  8. Coleman, A. W. 1985. Diversity of plastid DNA configuration among classes of eukaryote algae. J. Phycol. 21:1-16. https://doi.org/10.1111/j.0022-3646.1985.00001.x
  9. Freshwater, D. W. & Rueness, J. 1994. Phylogenetic relationships of some European Gelidium (Gelidiales, Rhodophyta) species, based on rbcL nucleotide sequence analysis. Phycologia 33:187-194. https://doi.org/10.2216/i0031-8884-33-3-187.1
  10. Fritsch, F. E. 1945. The structure and reproduction of the algae. Vol. II. Foreword, Phaeophyceae, Rhodophyceae, Myxophyceae. Cambridge University Press, Cambridge, 939 pp.
  11. Garbary, D. J., Hansen, G. I. & Scagel, R. F. 1981. The marine algae of British Columbia and northern Washington: Division Rhodophyta (red algae), Class Bangiophyceae. Syesis 13:137-195.
  12. Guiry, M. D. & Guiry, G. M. 2019. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org. Accessed Feb 2, 2019.
  13. Hansen, G. I., Hanyuda, T. & Kawai, H. 2017. Benthic marine algae on Japanese tsunami marine debris: a morphological documentation of the species. Part 1. The tsunami event, the project overview, and the red algae. OSU Scholars Archive, Corvallis, OR, 50 pp.
  14. Hansen, G. I., Hanyuda, T. & Kawai, H. 2018. Invasion threat of benthic marine algae arriving on Japanese tsunami marine debris in Oregon and Washington, USA. Phycologia 57:641-658. https://doi.org/10.2216/18-58.1
  15. Hewitt, C. L., Campbell, M. L., Thresher, R. E., Martin, R. B., Boyd, S., Cohen, B. F., Currie, D. R., Gamon, M. F., Keough, M. J., Lewis, J. A., Lockett, M. M., Mayes, N., McArthur, M. A., O'Hara, T. D., Poore, G. C. B., Ross, D. J., Storey, M. J., Watson, J. E. & Wilson, R. S. 2004. Introduced and cryptogenic species in Port Phillip Bay, Victoria, Australia. Mar. Biol. 144:183-202. https://doi.org/10.1007/s00227-003-1173-x
  16. Howell, E. A., Bograd, S. J., Morishige, C., Seki, M. P. & Polovina, J. J. 2012. On North Pacific circulation and associated marine debris concentration. Mar. Pollut. Bull. 65:16-22. https://doi.org/10.1016/j.marpolbul.2011.04.034
  17. Kamiya, M., Lindstrom, S. C., Nakayama, T., Yokoyama, A., Lin, S. -M., Guiry, M. D., Gurgel, F. D. G., Huisman, J. M., Kitayama, T., Suzuki, M., Cho, T. O. & Frey, W. 2017. Rhodophyta. In Frey, W. (Ed.) Syllabus of Plant Families. 13th ed. Part 2/2 Photoautotrophic Eukaryotic Algae. Borntraeger Science Publishers, Stuttgart, pp. 1-171.
  18. Kikuchi, N., West, J. A., Kajimura, M. & Shin, J. A. 2006. Goniotrichopsis reniformis (Kajimura) Kikuchi comb. nov. (Stylonematales, Rhodophyta) from Japan. Algae 21:185-191. https://doi.org/10.4490/algae.2006.21.2.185
  19. Kim, H. -S. & Kim, S. -M. 2011. Algal flora of Korea. Vol. 4, No. 1. Rhodophyta: Stylonematophyceae, Compsopogonophyceae, Bangiophyceae. Primitive red algae. National Institute of Biological Resources, Incheon, 138 pp.
  20. Maggs, C. A. 1990. Distribution and evolution of non-coralline crustose red algae in the North Atlantic. In Garbary, D. J. & South, G. R. (Eds.) Evolutionary Biogeography of the Marine Algae of the North Atlantic. NATO ASI Series G: Ecological Sciences 22. Springer-Verlag, Berlin, pp. 241-264.
  21. Maximenko, N., MacFadyen, A. & Kamachi, M. 2015. Modeling the drift of marine debris generated by the 2011 tsunami in Japan. PICES Press 23:32-36.
  22. Medcalf, D. G., Brannon, J. H., Scott, J. R., Allen, G. G., Lewis, J. & Norris, R. E. 1981. Polysaccharides from microscopic red algae and diatoms. Proc. Int. Seaweed Symp. 8:582-588.
  23. Moore, C. & Phillips, C. 2012. Plastic ocean: how a sea captain's chance discovery launched a determined quest to save the oceans. Penguin Books Ltd., London, 368 pp.
  24. Ott, F. D. 2009. Handbook of the taxonomic names associated with the non-marine Rhodophycophyta. J. Cramer, Stuttgart, 969 pp.
  25. Pascher, A. & Petrova, J. 1931. Uber Porenapparate und Bewegung bei einer neuen Bangiale (Chroothece mobilis). Archiv Protistenk. 74:490-522.
  26. Pendergrass, W., Wolf, N. & Poot, M. 2004. Efficacy of Mito-Tracker $Green^{TM}$ and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry A 61:162-169. https://doi.org/10.1002/cyto.a.20033
  27. Ronquist, F. & Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 17:1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  28. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539-542. https://doi.org/10.1093/sysbio/sys029
  29. Saunders, G. W. & Kraft, G. T. 1994. Small-subunit rRNA gene sequences from representatives of selected families of the Gigartinales and Rhodymeniales (Rhodophyta). 1. Evidence for the Plocamiales ord. nov. Can. J. Bot. 72:1250-1263. https://doi.org/10.1139/b94-153
  30. Scott, J. L., Orlova, E. & West, J. A. 2010. Ultrastructural observations of vegetative cells of two new genera in the Erythropeltidales (Compsopogonophyceae, Rhodophyta): Pseudoerythrocladia and Madagascaria. Algae 25:11-15. https://doi.org/10.4490/algae.2010.25.1.011
  31. Scott, J., Yang, E. C., West, J. A., Yokoyama, A., Kim, H. J., Loiseaux de Goër, S., O'Kelly, C. J., Orlova, E., Kim, S. Y., Park, J. K. & Yoon, H. S. 2011. On the genus Rhodella, the emended orders Dixoniellales and Rhodellales with a new order Glaucosphaerales (Rhodellophyceae, Rhodophyta). Algae 26:277-288. https://doi.org/10.4490/algae.2011.26.4.277
  32. Trifinopoulos, J., Nguyen, L. -T., von Haeseler, A. & Minh, B. Q. 2016. W-IQ-TREE: a fast-online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44:W232-W235. https://doi.org/10.1093/nar/gkw256
  33. Vitova, M., Hendrychova, J., Cepak, V. & Zachleder, V. 2005. Visualization of DNA-containing structures in various species of Chlorophyta, Rhodophyta and Cyanophyta using SYBR Green I dye. Folia Microbiol. 50:333-340. https://doi.org/10.1007/BF02931414
  34. West, J. A., de Goër, S. L. & Zuccarello, G. C. 2014. A new species of Bangiopsis: B. franklynottii sp. nov. (Stylonematophycae, Rhodophyta) from Australia and India and comments on the genus. Algae 29:101-109. https://doi.org/10.4490/algae.2014.29.2.101
  35. West, J. A., Hansen, G. I., Hanyuda, T. & Zuccarello, G. C. 2016. Flora of drift plastics: a new red algal genus, Tsunamia transpacifica (Stylonematophyceae) from Japanese tsunami debris in the northeast Pacific Ocean. Algae 31:289-301. https://doi.org/10.4490/algae.2016.31.10.20
  36. West, J. A. & McBride, D. L. 1999. Long-term and diurnal carpospore discharge patterns in the Ceramiaceae, Rhodomelaceae and Delesseriaceae (Rhodophyta). Hydrobiologia 398/399:101-113. https://doi.org/10.1023/A:1017025815001
  37. West, J. A., Zuccarello, G. C., Scott, J., Pickett-Heaps, J. & Kim, G. H. 2005. Observations on Purpureofilum apyrenoidigerum gen. et sp. nov. from Australia and Bangiopsis subsimplex from India (Stylonematales, Bangiophyceae, Rhodophyta). Phycol. Res. 53:49-66. https://doi.org/10.1111/j.1440-183.2005.00373.x
  38. West, J. A., Zuccarello, G. C., Scott, J. L., West, K. A. & Karsten, U. 2007. Rhodaphanes brevistipitata gen. et sp. nov., a new member of the Stylonematophyceae (Rhodophyta). Phycologia 46:440-449. https://doi.org/10.2216/07-03.1
  39. Whitten, D. 2012. Glass bottle marks. Glass fishing net floats. Available from: https://www.glassbottlemarks.com/glass-fishing-net-floats/. Accessed Apr 8, 2019.
  40. Wood, A. L. 1985. Beachcombing for Japanese glass floats. 4th ed. Binford & Mort Publishing, Portland, OR, 266 pp.
  41. Wujek, D. E. & Timpano, P. 1986. Rufusia (Porphyridiales, Phragmonemataceae), a new red alga from sloth hair. Brenesia 25/26:163-168.
  42. Yokoyama, A., Scott, J. L., Zuccarello, G. C., Kajikawa, M., Hara, Y. & West, J. A. 2009. Corynoplastis japonica gen. et sp. nov. and Dixoniellales ord. nov. (Rhodellophyceae, Rhodophyta) based on morphological and molecular evidence. Phycol. Res. 57:278-289. https://doi.org/10.1111/j.1440-1835.2009.00547.x
  43. Yoon, H. S., Hackett, J. D., Pinto, G. & Bhattacharya, D. 2002. The single, ancient origin of chromist plastids. Proc. Natl. Acad. Sci. U. S. A. 99:15507-15512. https://doi.org/10.1073/pnas.242379899
  44. Yoon, H. S., Müller, K. M., Sheath, R. G., Ott, F. D. & Bhattacharya, D. 2006. Defining the major lineages of red algae (Rhodophyta). J. Phycol. 42:482-492. https://doi.org/10.1111/j.1529-8817.2006.00210.x
  45. Yoon, H. S., Zuccarello, G. C. & Bhattacharya, D. 2010. Evolutionary history and taxonomy of red algae. In Seckbach, J. & Chapman, D. J. (Eds.) Red Algae in the Genomic Age. Vol. 13. Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer, New York, pp. 27-42.
  46. Zheng, B. F. & Li, J. 2009. Flora algarum marinarum sinicarum, Tomus II, Rhodophyta No. I. Porphyridiales, Erythropeltidales, Goniotrichiales, Bangiales. Science Press, Beijing, 134 pp.
  47. Zuccarello, G. C. & Lokhorst, G. M. 2005. Molecular phylogeny of the genus Tribonema (Xanthophyceae) using rbcL gene sequence data: monophyly of morphologically simple algal species. Phycologia 44:384-392. https://doi.org/10.2216/0031-8884(2005)44[384:MPOTGT]2.0.CO;2
  48. Zuccarello, G. C., Oellermann, M., West, J. A. & De Clerck, O. 2009. Complex patterns of actin molecular evolution in the red alga Stylonema alsidii (Stylonematophyceae, Rhodophyta). Phycol. Res. 57:59-65. https://doi.org/10.1111/j.1440-1835.2008.00521.x
  49. Zuccarello, G. C., Sandercock, B. & West, J. A. 2002. Diversity within red algal species: variation in world-wide samples of Spyridia filamentosa (Ceramiaceae) and Murrayella periclados (Rhodomelaceae) using DNA markers and breeding studies. Eur. J. Phycol. 37:403-417. https://doi.org/10.1017/S0967026202003827
  50. Zuccarello, G. C., West, J. A. & Kikuchi, N. 2008. Phylogenetic relationships within the Stylonematales (Stylonematophyceae, Rhodophyta): biogeographic patterns do not apply to Stylonema alsidii. J. Phycol. 44:384-393. https://doi.org/10.1111/j.1529-8817.2008.00467.x

Cited by

  1. New insights on the distribution and habitat of Ulvella endozoica (Ulvellaceae, Chlorophyta) in the tropical Southwestern Atlantic, based on thallus ontogeny in culture and DNA barcoding vol.51, pp.1, 2019, https://doi.org/10.1007/s12526-020-01153-w