DOI QR코드

DOI QR Code

Species diversity and distribution of the genus Colpomenia (Scytosiphonaceae, Phaeophyceae) along the coast of China

  • Song, Xiao-Han (Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences) ;
  • Hu, Zi-Min (Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences) ;
  • Sun, Zhong-Min (Laboratory of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences) ;
  • Draisma, Stefano G.A. (Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University) ;
  • Fresia, Pablo (Unidad de Bioinformatica, Institut Pasteur de Montevideo) ;
  • Duan, De-Lin (Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences)
  • Received : 2019.01.12
  • Accepted : 2019.07.22
  • Published : 2019.09.15

Abstract

The marine brown algal genus Colpomenia has a worldwide distribution, with five species reported in Korea and Japan. However, no studies to date attempted to identify the number of species and geographical distribution of Colpomenia along Chinese coast. To fill the biodiversity knowledge gap, we analyzed 63 mitochondrial cox3 and 62 mitochondrial atp6 sequences of Colpomenia specimens collected from 30 localities along the Chinese coast. Maximum likelihood and Bayesian inference trees suggest the presence of at least three Colpomenia species (i.e., C. peregrina, C. claytoniae, and C. sinuosa) in China. C. peregrina and C. claytoniae are documented for the first time. C. sinuosa was only found in the South China Sea and its distribution didn't overlap with that of C. peregrina which was found in the Yellow-Bohai Sea and the East China Sea. C. claytoniae appears to be confined to three isolated islands in the East and the South China Sea, where it occurs in sympatry with, respectively, C. peregrina and C. sinuosa. Future study can focus on comparing eco-physiological differences of Colpomenia species in response to environmental variables and exploring possible genetic hybridization / introgression at inter-specific contact zones.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Thailand Research Fund

References

  1. Aisha, K. & Shameel, M. 2012. Taxonomy of the genus Colpomenia (Laminarophyceae, Phaeophycota) from the coast of Karachi. Proc. Pak. Acad. Sci. 49:123-129.
  2. Barkley, R. A. 1970. The Kuroshio current. Sci. J. 6:54-60.
  3. Blackler, H. 1967. The ocurrence of Colpomenia peregrina (Sauv.) Hamel in the Mediterranean (Phaeophyta:Scytosiphonales). Blumea 15:5-8.
  4. Boo, S. M. 2010. Scytosiphonaceae, Petrospongiaceae. In Kim, H. S. & Boo, S. M. (Eds.) Algal Flora of Korea. Vol. 2, No. 1. Heterokontophyta: Phaeophyceae: Ectocarpales. Marine Brown Algae 1. National Institute of Biological Resources, Incheon, pp. 155-185.
  5. Boo, S. M. & Ko, Y. D. 2012. Marine plants from Korea. Marine & Extreme Genome Research Centre Program, Seoul, 233 pp.
  6. Boo, S. M., Lee, K. M., Cho, G. Y. & Nelson, W. 2011. Colpomenia claytonii sp. nov. (Scytosiphonaceae, Phaeophyceae) based on morphology and mitochondrial cox3 sequences. Bot. Mar. 54:159-167. https://doi.org/10.1515/BOT.2011.017
  7. Cho, G. Y., Boo, S. M., Nelson, W. & Clayton, M. N. 2005. Genealogical partitioning and phylogeography of Colpomenia peregrina (Scytosiphonaceae, Phaeophyceae), based on plastid rbcL and nuclear ribosomal DNA internal transcribed spacer sequences. Phycologia 44:103-111. https://doi.org/10.2216/0031-8884(2005)44[103:GPAPOC]2.0.CO;2
  8. Cho, G. Y., Choi, D. W., Kim, M. S. & Boo, S. M. 2009. Sequence repeats enlarge the internal transcribed spacer 1 region of the brown alga Colpomenia sinuosa (Scytosiphonaceae, Phaeophyceae). Phycol. Res. 57:242-250. https://doi.org/10.1111/j.1440-1835.2009.00543.x
  9. Clayton, M. N. 1975. A study of variation in Australian species of Colpomenia (Phaeophyta, Scytosiphonales). Phycologia 14:187-195. https://doi.org/10.2216/i0031-8884-14-4-187.1
  10. Cock, J. M., Sterck, L., Rouze, P., Scornet, D., Allen, A. E., Amoutzias, G., Anthouard, V., Artiguenave, F., Aury, J. -M., Badger, J. H., Beszteri, B., Billiau, K., Bonnet, E., Bothwell, J. H., Bowler, C., Boyen, C., Brownlee, C., Carrano, C. J., Charrier, B., Cho, G. Y., Coelho, S. M., Collen, J., Corre, E., Da Silva, C., Delage, L., Delaroque, N., Dittami, S. M., Doulbeau, S., Elias, M., Farnham, G., Gachon, C. M. M., Gschloessl, B., Heesch, S., Jabbari, K., Jubin, C., Kawai, H., Kimura, K., Kloareg, B., Kupper, F. C., Lang, D., La Bail, A., Leblanc, C., Lerouge, P., Lohr, M., Lopez, P. J., Martens, C., Maumus, F., Michel, G., Miranda-Saavedra, D., Morales, J., Moreau, H., Motomura, T., Nagasato, C., Napoli, C. A., Nelson, D. R., Nyvall-Collen, P., Peters, A. F., Pommier, C., Potin, P., Poulain, J., Quesneville, H., Read, B., Rensing, S. A., Ritter, A., Rousvoal, S., Samanta, M., Samson, G., Schroeder, D. C., Segurens, B., Strittmatter, M., Tonon, T., Tregear, J. W., Valentin, K., von Dassow, P., Yamagishi, T., Van de Peer, Y. & Wincker, P. 2010. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617-621. https://doi.org/10.1038/nature09016
  11. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9:772.
  12. Guindon, S. & Gascuel, O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704. https://doi.org/10.1080/10635150390235520
  13. Guiry, M. D. & Guiry, G. M. 2019. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org. Accessed Jan 10, 2019.
  14. Guo, X. 1979. Sea level changes since late Pleistocene in China. Sci. Geol. Sin. 4:330-341.
  15. Hamel, G. 1937. Phaeophyceae de France. Fasc. III. Wolf, Paris, pp. 177-240.
  16. Harper, M. A., Cassie, C. V., Chang, F. H., Nelson, W. A. & Broady, P. A. 2012. Phylum Ochrophyta: brown and golden-brown algae, diatoms, silicioflagellates, and kin. In Gordon, D. P. (Ed.) New Zealand Inventory of Biodiversity. Vol. 3. Kingdoms Bacteria, Protozoa, Chromista, Plantae, Fungi. Canterbury University Press, Christchurch, pp. 114-163.
  17. Hu, Z. -M., Li, J. -J., Sun, Z. -M., Gao, X., Yao, J. -T., Choi, H. -G., Endo, H. & Duan, D. -L. 2017. Hidden diversity and phylogeographic history provide conservation insights for the edible seaweed Sargassum fusiforme in the Northwest Pacific. Evol. Appl. 10:366-378. https://doi.org/10.1111/eva.12455
  18. Hu, Z. -M., Li, J. -J., Sun, Z. -M., Oak, J. -H., Zhang, J., Fresia, P., Grant, W. S. & Duan, D. -L. 2015. Phylogeographic structure and deep lineage diversification of the red alga Chondrus ocellatus Holmes in the Northwest Pacific. Mol. Ecol. 24:5020-5033. https://doi.org/10.1111/mec.13367
  19. Hu, Z. -M., Zhang, J., Lopez-Bautista, J. & Duan, D. -L. 2013. Asymmetric genetic exchange in the brown seaweed Sargassum fusiforme (Phaeophyceae) driven by oceanic currents. Mar. Biol. 160:1407-1414. https://doi.org/10.1007/s00227-013-2192-x
  20. Keith, S. A., Kerswell, A. P. & Connolly, S. R. 2014. Global diversity of marine macroalgae: environmental conditions explain less variation in the tropics. Glob. Ecol. Biogeogr. 23:517-529. https://doi.org/10.1111/geb.12132
  21. Kogame, K. 1997. Life history of Colpomenia sinuosa and Hydroclathrus clathratus (Scytosiphonales, Phaeophyceae) in culture. Phycol. Res. 45:277-231. https://doi.org/10.1111/j.1440-1835.1997.tb00081.x
  22. Kogame, K., Horiguchi, T. & Masuda, M. 1999. Phylogeny of the order Scytosiphonales (Phaeophyceae) based on DNA sequences of rbcL, partial rbcS, and partial LSU nrDNA. Phycologia 38:496-502. https://doi.org/10.2216/i0031-8884-38-6-496.1
  23. Kumar, S., Stecher, G. & Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870-1874. https://doi.org/10.1093/molbev/msw054
  24. Lee, K. M., Boo, G. H., Coyer, J. A., Nelson, W. A., Miller, K. A. & Boo, S. M. 2014a. Distribution patterns and introduction pathways of the cosmopolitan brown alga Colpomenia peregrina using mt cox3 and atp6 sequences. J. Appl. Phycol. 26:491-504. https://doi.org/10.1007/s10811-013-0052-1
  25. Lee, K. M., Boo, S. M., Kain (Jones), J. M. & Sherwood, A. R. 2013. Cryptic diversity and biogeography of the widespread brown alga Colpomenia sinuosa (Ectocarpales, Phaeophyceae). Bot. Mar. 56:15-25.
  26. Lee, K. M., Mansilla, A., Nelson, W. A. & Boo, S. M. 2012. Colpomenia durvillei (Scytosiphonaceae, Phaeophyceae): its distribution and relationships with other elongate species of the genus. Bot. Mar. 55:367-375.
  27. Lee, K. M., Riosmena-Rodriguez, R., Kogame, K. & Boo, S. M. 2014b. Colpomenia wynnei sp. nov. (Scytosiphonaceae, Phaeophyceae): a new species of marine algae from northeast Asia. Phycologia 53:480-487. https://doi.org/10.2216/13-232.1
  28. Lee, Y. & Kang, S. 2001. A catalogue of the seaweeds in Korea. Cheju National University Press, Jeju, 662 pp.
  29. Lee, Y. P. 2008. Marine algae of Jeju. Academy Publication, Seoul, 477 pp.
  30. Li, J. -J., Hu, Z. -M., Gao, X., Sun, Z. -M., Choi, H. -G., Duan, D. -L. & Endo, H. 2017. Oceanic currents drove population genetic connectivity of the brown alga Sargassum thunbergii in the north-west Pacific. J. Biogeogr. 44:230-242. https://doi.org/10.1111/jbi.12856
  31. Li, T. & Chang, F. 2009. Paleoceanography in the Okinawa Trough. Ocean Press, Beijing, 259 pp.
  32. Librado, P. & Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452. https://doi.org/10.1093/bioinformatics/btp187
  33. Lin, S. -M., Tseng, L. -C., Ang, P. O. Jr., Bolton, J. & Liu, L. -C. 2018. Long-term study on seasonal changes in floristic composition and structure of marine macroalgal communities along the coast of Northern Taiwan, southern East China Sea. Mar. Biol. 165:83. https://doi.org/10.1007/s00227-018-3344-9
  34. Liu, F., Pang, S., Li, J. & Li, X. 2016. Complete mitochondrial genome of the brown alga Colpomenia peregrina (Scytosiphonaceae, Phaeophyceae): genome characterization and comparative analyses. Mitochondrial DNA A DNA Mapp. Seq. Anal. 27:1601-1603.
  35. Liu, J. 1995. Paleoceanographic characteristics during the LGM period in the west Pacific marginal seas. Mar. Sci. 19:14-16.
  36. Liu, R. 2008. Checklist of marine biota of China seas. Science Press, Beijing, 1267 pp.
  37. Longhurst, A. 2007. Ecological geography of the sea. Elsevier Academic Press, Oxford, 560 pp.
  38. Ma, C. -L., Ma, R. -P. & Bai, Y. -H. 2017. Characteristics of atmospheric environment in China's coastal areas and atmospheric corrosion in typical coastal regions. Equip. Environ. Eng. 14:65-69.
  39. Muller, R., Laepple, T., Bartsch, I. & Wiencke, C. 2009. Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperature waters. Bot. Mar. 52:617-638. https://doi.org/10.1515/BOT.2009.08
  40. Nelson, W. A. 2013. New Zealand seaweeds: an illustrated guide. Te Papa Press, Wellington, NZ, 328 pp.
  41. Okamura, K. 1936. Nippon kaiso shi [Descriptions of Japanese algae]. Uchida Rokakuho, Tokyo, 964 pp.
  42. Perestenko, L. P. 1980. Vodorosli Zaliva Petra Velikogo [The seaweeds of Peter the Great Bay]. "NAUKA" Leningradskoe Otdelenie, Leningrad, 232 pp.
  43. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539-542. https://doi.org/10.1093/sysbio/sys029
  44. Santianez, W. J. E., Macaya, E. C., Lee, K. M., Cho, G. Y., Boo, S. M. & Kogame, K. 2018. Taxonomic reassessment of the Indo-Pacific Scytosiphonaceae (Phaeophyceae): Hydroclathrus rapanuii sp. nov. and Chnoospora minima from Easter Island, with proposal of Dactylosiphon gen. nov. and Pseudochnoospora gen. nov. Bot. Mar. 61:47-64. https://doi.org/10.1515/bot-2017-0089
  45. Sauvageau, C. 1927. Sur le Colpomenia sinuosa Derb. et Sol. Bull. Stn. Biol. d'Arcachon 24:309-353.
  46. Schaffelke, B., Smith, J. E. & Hewitt, C. L. 2006. Introduced macroalgae - a growing concern. J. Appl. Phycol. 18:529-541. https://doi.org/10.1007/s10811-006-9074-2
  47. Scott, F. J. 2017. Marine plants of Tasmania. Tasmania Herbarium, Tasmanian Museum and Art Gallery, Hobart, 360 pp.
  48. Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313. https://doi.org/10.1093/bioinformatics/btu033
  49. Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Richard, D., Berghe, E. V. & Worm, B. 2010. Global patterns and predictions of marine biodiversity across taxa. Nature 466:1098-1101. https://doi.org/10.1038/nature09329
  50. Tseng, C. K. 1983. Common seaweeds of China. Science Press, Beijing, 316 pp.
  51. Tseng, C. K. 2008. Seaweeds in Yellow Sea and Bohai Sea of China. Science Press, Beijing, 453 pp.
  52. Tseng, C. K. & Chang, C. F. 1959. On the regional division of the marine algal flora of the western north Pacific. Oceanol. Limnol. Sin. 2:244-267.
  53. Tseng, C. K. & Chang, C. F. 1963. A preliminary analytical study of the Chinese marine algal flora. Oceanol. Limnol. Sin. 5:245-253.
  54. Tyberghein, L., Verbruggen, H., Pauly, K., Troupin, C., Mineur, F. & De Clerck, O. 2012. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21:272-281. https://doi.org/10.1111/j.1466-8238.2011.00656.x
  55. van den Hoek, C. 1984. World-wide latitudinal and longitudinal seaweed distribution patterns and their possible causes, as illustrated by the distribution of Rhodophytan genera. Helgol. Meeresunters. 38:227-257. https://doi.org/10.1007/bf01997483
  56. Vandermeulen, H. 1984. The taxonomy and autecology of Colpomenia peregrina (Sauv.) Hamel (Phaeophyceae). Ph.D. dissertation, The University of British Columbia, Vancouver, 330 pp.
  57. Wang, P. 1999. Response of western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features. Mar. Geol. 156:5-39. https://doi.org/10.1016/S0025-3227(98)00172-8
  58. Xie, C., Jian, Z. & Zhao, Q. 1996. The paleogeographic configuration of China Seas and its climate influence during the last glacial maximum. Quat. Sci. 16:129.
  59. Yoshida, T., Suzuki, M. & Yoshinaga, K. 2015. Checklist of marine algae of Japan (revised in 2015). Jpn. J. Phycol. 63:129-189.
  60. Zheng, J., Fang, X. & Wu, S. 2018. Recent progress of climate change research in physical geography studies from China. Prog. Geogr. 37:16-27. https://doi.org/10.18306/dlkxjz.2018.01.003

Cited by

  1. MtDNA-Based Phylogeography of the Red Alga Agarophyton vermiculophyllum (Gigartinales, Rhodophyta) in the Native Northwest Pacific vol.7, 2019, https://doi.org/10.3389/fmars.2020.00366