DOI QR코드

DOI QR Code

Ecotoxicological Response of Cd and Zn Exposure to a Field Dominant Species, Chironomus plumosus

카드뮴과 아연 노출에 따른 야외종 장수깔따구(Chironomus plumosus)의 생태독성학적 반응

  • Kim, Won-Seok (Division of Marine Technolohy, Chonnam National University) ;
  • Hong, Cheol (National Institute Environmental Research) ;
  • Park, Kiyun (Fisheries Science Institute, Chonnam National University) ;
  • Kwak, Ihn-Sil (Division of Marine Technolohy, Chonnam National University)
  • Received : 2019.07.22
  • Accepted : 2019.09.05
  • Published : 2019.09.30

Abstract

Heavy metal contamination in freshwater ecosystem has been receiving increased worldwide attention due to their direct or indirect effect on human health and aquatic organisms. In this study, we investigated biological effects such as survival rate, growth rate, emergence rate, sex ratio and mouthpart deformity of Chironomus plumosus. The survival rate of C. plumosus decreased with the increase in heavy metal concentration as well as exposure time after cadmium (Cd) or zinc (Zn) exposure. The growth rate decreased at days 4 and 7 after Cd exposure and significantly reduced at the relatively high concentration of $50mg\;L^{-1}$ Cd. The emergence rate was decreased at $50mg\;L^{-1}$ Cd and $100mg\;L^{-1}$ Zn. The sex ratio showed imbalance pattern at relatively low concentrations (0.5 and $2mg\;L^{-1}$ Cd) with high proportion of male and relatively high concentration ($100mg\;L^{-1}$ Zn) with high proportion of female (60%). In addition, mentum deformities were observed at high concentration of Cd and Zn. These results suggest that heavy metal exposure in aquatic ecosystem may affect biological and morphological responses, and aquatic midge C. plumosus is a potential indicator for assessment of environmental pollutant such as heavy metals.

인간의 인위적 활동으로 인해 발생하는 중금속 중 카드뮴(Cd)과 아연(Zn)은 다양한 경로를 통해 하천으로 유입되어 서식생물에게 유해 영향을 준다. 본 연구에서는 도심 하천에서 우점하는 장수깔따구 (Chironomus plumosus)를 이용하여 Cd와 Zn 노출에 따른 생태독성학적 반응을 연구하였다. 생활사를 고려하여, 생존율, 성장율, 우화율, 성비와 하순기절 기형을 관찰하였다. 장수깔따구 생존율은 Cd와 Zn 노출에 따라 시간, 농도의존적인 경향을 나타냈다. 성장율은 Cd 노출 후 Day 4와 Day 7, 농도의존적인 감소를 보였으며, 고농도인 $50mg\;L^{-1}$에서 대조군에 비해 급격한 감소를 나타냈다. 또한, 우화율은 10, $50mg\;L^{-1}$ Cd에서 대조군에 비해 감소함을 관찰하였다. 성비 변화는 $100mg\;L^{-1}$ Zn에서 암컷의 비율이 증가였으나 농도가 높아짐에 따라 수컷의 비율이 높아짐을 보이며 성비불균형이 관찰되었다. 게다가, 장수깔따구의 하순기절에서는 대조군에 비해 Cd와 Zn 노출된 장수깔따구에서 기형이 관찰되었다. 이와 같은 결과는 수생태계로 유입되는 중금속이 하천의 하상저층에 서식하는 저서무척추동물에게 유해한 영향을 주며, 중금속 노출에 따른 생물학적 분석을 위한 현장 지표종으로서의 가능성을 보여주었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Al-Shami, S.A., M.R.C. Salmah, A.A. Hassan and M.N.S. Azizah. 2011. Evaluation of mentum deformities of Chironomus spp. (Chironomidae: Diptera) larvae using modified toxic score index (MTSI) to assess the environmental stress in Juru River Basin, Penang, Malaysia. Environmental Monitoring and Assessment 177: 233-244. https://doi.org/10.1007/s10661-010-1630-1
  2. Baki, M.A., M.M. Hossain, J. Akter, S.B. Quraishi, M.F.H. Shojib, A.A. Ullah and M.F. Khan. 2018. Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island, Bangladesh. Ecotoxicology and Environmental Safety 159: 153-163. https://doi.org/10.1016/j.ecoenv.2018.04.035
  3. Baumann, L., H. Holbech, S. Keiter, K.L. Kinnberg, S. Knorr, T. Nagel and T. Braunbeck. 2013. The maturity index as a tool to facilitate the interpretation of changes in vitellogenin production and sex ratio in the fish sexual development test. Aquatic Toxicology 128-129: 34-42. https://doi.org/10.1016/j.aquatox.2012.11.016
  4. Bechard, K.M., P.L. Gillis and C.M. Wood. 2008. Acute toxicity of waterborne Cd, Cu, Pb, Ni, and Zn to first-instar Chironomus riparius larvae. Archives of Environmental Contamination and Toxicology 54: 454-459. https://doi.org/10.1007/s00244-007-9048-7
  5. Colombo, V., V.J. Pettigrove, L.A. Golding and A.A. Hoffmann. 2014. Transgenerational effects of parental nutritional status on offspring development time, survival, fecundity, and sensitivity to zinc in Chironomus tepperi midges. Ecotoxicology and Environmental Safety 110: 1-7. https://doi.org/10.1016/j.ecoenv.2014.07.037
  6. Dias, V., C. Vasseur and J.M. Bonzom. 2008. Exposure of Chironomus riparius larvae to uranium: effects on survival, development time, growth, and mouthpart deformities. Chemosphere 71: 574-581. https://doi.org/10.1016/j.chemosphere.2007.09.029
  7. Dickman, M., I. Brindle and M. Benson. 1992. Evidence of teratogens in sediments of the Niagara River watershed as reflected by chironomid (Diptera: Chironomidae) labial plate deformities. Journal of Great Lakes Research 18: 467-480. https://doi.org/10.1016/S0380-1330(92)71312-4
  8. Elendt, B.P. 1990. Selenium deficiency in Crustacea; an ultrastructural approach to antennal damage in aphnia magna Straus. Protoplasma 154: 25-33. https://doi.org/10.1007/BF01349532
  9. Gillis, P.L., L.C. Diener, T.B. Reynoldson and D.G. Dixon. 2002. Cadmium-induced production of a metallothioneinlike protein in Tubifex tubifex (Oligochaeta) and Chironomus riparius (Diptera): correlation with reproduction and growth. Environmental Toxicology and Chemistry 21: 1836-1844. https://doi.org/10.1002/etc.5620210911
  10. Henson, M.C. and P.J. Chedrese. 2004. Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Experimental Biology and Medicine 229: 383-392. https://doi.org/10.1177/153537020422900506
  11. Jung, H.B., S.T. Yun, B. Mayer, S. Kim, S.S. Park and P.K. Lee. 2005. Transport and sediment-water partitioning of trace metals in acid mine drainage: an example from the abandoned Kwangyang Au-Ag mine area, South Korea. Environmental Geology 48: 437-449. https://doi.org/10.1007/s00254-005-1257-7
  12. Kim, W.S., B.H. Im, C. Hong, S.W. Choi, K. Park and I.S. Kwak. 2017. Gene expression of Chironomus riparius heat shock protein 70 and developmental retardation exposure to salinity. Korean Journal of Ecology and Environment 50: 305-313. https://doi.org/10.11614/KSL.2017.50.3.305
  13. Kim, W.S., R. Kim, K. Park, N. Chamilani and I.S. Kwak. 2015. The molecular biomarker genes expressions of rearing species Chironomus riparious and field species Chironomus plumosus exposure to heavy metals. Korean Journal of Ecology and Environment 48: 86-94. https://doi.org/10.11614/KSL.2015.48.2.086
  14. Lushchak, V.I. 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology 101: 13-30. https://doi.org/10.1016/j.aquatox.2010.10.006
  15. Martinez, E.A., B.C. Moore, J. Schaumloffel and N. Dasgupta. 2001. Induction of morphological deformities in Chironomus tentans exposed to zinc- and lead-spiked sediments. Environmental Toxicology and Chemistry 20: 2475-2481. https://doi.org/10.1002/etc.5620201112
  16. Martinez, E.A., B.C. Moore, J. Schaumloffel and N. Dasgupta. 2003. Morphological abnormalities in Chironomus tentans exposed to cadmium and copper-spiked sediments. Ecotoxicology and Environmental Safety 55: 204-212. https://doi.org/10.1016/S0147-6513(02)00136-7
  17. Mebane, C.A., D.P. Hennessy and F.S. Dillon. 2008. Developing acute-to-chronic toxicity ratios for lead, cadmium, and zinc using rainbow trout, a mayfly, and a midge. Water, Air & Soil Pollution 188: 41-66. https://doi.org/10.1007/s11270-007-9524-8
  18. Michailova, P., J. Ilkova, A.P. Dean and K.N. White. 2015. Cytogenetic index and functional genome alterations in Chironomus piger Strenzke (Diptera, Chironomidae) in the assessment of sediment pollution: a case study of Bulgarian and UK rivers. Ecotoxicology and Environmental Safety 111: 220-227. https://doi.org/10.1016/j.ecoenv.2014.10.018
  19. Ministry of Environment. 2015. Standard for contamination of river and lake sediments. National Institute of Environmental Research No 687.
  20. Montaño-Campaz, M.L., L. Gomes-Dias, B.E.T. Restrepo and V.H. García-Merchan. 2019. Incidence of deformitites and variation in shape of mentum and wing of Chironomus columbiensis (Diptera, Chironomidae) as tools to assess aquatic contamination. Plos One 14: e0210348. https://doi.org/10.1371/journal.pone.0210348
  21. Naddy, R.B., A.S. Cohen and W.A. Stubblefield. 2015. The interactive toxicity of cadmium, copper, and zinc to Ceriodaphnia dubia and rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry 34: 809-815. https://doi.org/10.1002/etc.2870
  22. Park, K., H.W. Bang, J. Park and I.S. Kwak. 2009. Ecotoxicological multilevel-evaluation of the effects of fenbendazole exposure to Chironomus riparius larvae. Chemosphere 77: 359-367. https://doi.org/10.1016/j.chemosphere.2009.07.019
  23. Park, K and I.S. Kwak. 2008. Characterization of heat shock protein 40 and 90 in Chironomus riparius larvae: effects of di (2-ethylhexyl) phthalate exposure on gene expressions and mouthpart deformities. Chemosphere 74: 89-95. https://doi.org/10.1016/j.chemosphere.2008.09.041
  24. Park, K. and I.S. Kwak. 2010. Molecular effects of endocrine-disrupting chemicals on the Chironomus riparius estrogen-related receptor gene. Chemosphere 79: 934-941. https://doi.org/10.1016/j.chemosphere.2010.03.002
  25. Park, K. and I.S. Kwak. 2011. Ribosomal protein S3 gene expression of Chironomus riparius under cadmium, copper and lead stress. Journal of Toxicology and Environmental Health Science 3: 347-355.
  26. Park, K. and I.S. Kwak. 2012a. Gene expression of ribosomal protein mRNA in Chironomus riparius: effects of endocrine disruptor chemicals and antibiotics. Comparative Biochemistry and Physiology - Part C: Toxicology & Pharmacology 156: 113-120. https://doi.org/10.1016/j.cbpc.2012.05.002
  27. Park, K. and I.S. Kwak. 2012b. Assessment of potential biomarkers, metallothionein and vitellogenin mRNA expression in various chemically exposed benthic Chironomus riparius larvae. Ocean Science Journal 47: 435-444. https://doi.org/10.1007/s12601-012-0039-x
  28. Park, K. and I.S. Kwak. 2014. The effect of temperature gradients endocrine signaling and antioxidant gene expression during Chironomus riparius development. Science of the Total Environment 471: 1003-1011. https://doi.org/10.1016/j.scitotenv.2013.10.052
  29. Park, K. and I.S. Kwak. 2018. Disrupting effects of antibiotic sulfathiazole on developmental process during sensitive life-cycle stage of Chironomus riparius. Chemosphere 190: 25-34. https://doi.org/10.1016/j.chemosphere.2017.09.118
  30. Park, K., J. Park, J. Kim, I.S. Kwak. 2010. Biological and molecular responses of Chironomus riparius (Diptera, Chironomidae) to herbicide 2, 4-D (2, 4-dichlorophenoxyacetic acid). Comparative Biochemistry and Physiology - Part C: Toxicology & Pharmacology 151: 439-446. https://doi.org/10.1016/j.cbpc.2010.01.009
  31. Park, K., T.S. Kwak, W.S. Kim and I.S. Kwak. 2019. Changes in exoskeleton surface roughness and expression of chitinase genes in mud crab Macrophthalmus japonicus following heavy metal differences of estuary. Marine Pollution Bulletin 138: 11-18. https://doi.org/10.1016/j.marpolbul.2018.11.016
  32. Rand, G.M., P.G. Wells and L.S. McCarty. 2003. Introduction to aquatic toxicology, p. 123-167. In: Fundamentals of aquatic toxicology (Rand, G.M., ed.). Taylor and Francis, New York.
  33. Schaller, J. 2014. Bioturbation/bioirrigation by chironomus plumosus as main factor controlling elemental remobilization from aquatic sediments? Chemosphere 107: 336-343. https://doi.org/10.1016/j.chemosphere.2013.12.086
  34. Tuikka, A.I., C. Schmitt, S. Hoss, N. Bandow, P.C. von der Ohe, D. de Zwart, E. de Deckere, G. Streck, S. Mothes, B. van Hattum, A. Kocan, R. Brix, W. Brack, D. Barcelo, A.J. Sormunen and J.V. Kukkonen. 2011. Toxicity assessment of sediments from three European river basins using a sediment contact test battery. Ecotoxicology and Environmental Safety 74: 123-131. https://doi.org/10.1016/j.ecoenv.2010.08.038
  35. Tousova, Z., J. Kuta, D. Hynek, V. Adam, R. Kizek, L. Blaha and K. Hilscherova. 2016. Metallothionein modulation in relation to cadmium bioaccumulation and age-dependent sensitivity of Chironomus riparius larvae. Environmental Science and Pollution Research 23: 10504-10513. https://doi.org/10.1007/s11356-016-6362-5
  36. Wasiberg, M., P. Joseph, B. Hale and D. Beyersmann. 2003. Molecular and cellular mechanisms of cadmium carcinogenesis: a review. Toxicology 192: 95-117. https://doi.org/10.1016/S0300-483X(03)00305-6
  37. Wen, W., X. Xia, X. Chen, H. Wang, B. Zhu, H. Li and Y. Li. 2016. Bioconcentration of perfluoroalkyl substances by Chironomus plumosus larvae in water with different types of dissolved organic matters. Environmental Pollution 213: 299-307. https://doi.org/10.1016/j.envpol.2016.02.018
  38. Xia, X., X. Chen, X. Zhao, H. Chen and M. Shen. 2012. Effects of carbon nanotubes, chars, and ash on bioaccumulation of perfluorochemicals by Chironomus plumosus larvae in sediment. Environmental Science & Technology 46: 12467-12475. https://doi.org/10.1021/es303024x
  39. Zheng, J.L., S.S. Yuan, C.W. Wu, W.Y. Li. 2016. Chronic waterborne zinc and cadmium exposures induced different responses towards oxidative stress in the liver of zebrafish. Aquatic Toxicology 177: 261-268. https://doi.org/10.1016/j.aquatox.2016.06.001
  40. Rodriguez, E.M., D.A. Medesani and M. Fingerman. 2007. Endocrine disruption in crustaceans due to pollutants: a review. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 146: 661-671. https://doi.org/10.1016/j.cbpa.2006.04.030