DOI QR코드

DOI QR Code

Analysis of Food Web Structure of Nakdong River Using Quantitative Food Web Parameters Obtained from Carbon and Nitrogen Stable Isotope Ratios

낙동강 수생태계 먹이망 구조 분석: 안정동위원소 비 기반의 정량적 생태정보를 이용한 영양단계 시공간 분포 경향 파악

  • Oh, Hye-Ji (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Jin, Mei-Yan (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Choi, Bohyung (Department of Marine Sciences and Convergent Technology, Hanyang University) ;
  • Shin, Kyung-Hoon (Department of Marine Sciences and Convergent Technology, Hanyang University) ;
  • La, Geung-Hwan (Department of Environmental Education, Sunchon National University) ;
  • Kim, Hyun-Woo (Department of Environmental Education, Sunchon National University) ;
  • Jang, Min-Ho (Department of Biology Education, Kongju National University) ;
  • Lee, Kyung-Lak (Watershed Ecology Research Team, National Institute of Environmental Research) ;
  • Chang, Kwang-Hyeon (Department of Environmental Science and Engineering, Kyung Hee University)
  • Received : 2019.02.26
  • Accepted : 2019.03.12
  • Published : 2019.03.31

Abstract

Recently, quantitative analyses of food web structure based on carbon and nitrogen stable isotopes are widely applied to environmental assessments as well as ecological researches of various ecosystems, particularly rivers and streams. In the present study, we analyzed carbon and nitrogen stable isotope ratios of POM (both planktonic and attached forms), zooplankton, benthic macroinvertebrates and fish collected from 6 sites located at Nakdong River. Samples were collected from upstream areas of 5 weirs (Sangju, Gangjeong-Goryeong, Dalseong, Hapcheon-Changnyeong, and Changnyeong-Haman Weirs) and one downstream area of Hapcheon-Changnyeong Weir in dry season (June) and after rainy season (September). We suggested ranges of their carbon and nitrogen stable isotope ratios and calculated their trophic levels in the food web to compare their temporal and spatial variations. Trophic levels of organisms were relatively higher in Sangju Weir located at upper part of Nakdong River, and decreased thereafter. However, the trophic levels were recovered at the Changnyeong-Haman Weir, the lowest weir in the river. The trophic level calculated by nitrogen stable isotope ratios showed more reliable ranges when they were calculated based on zooplankton than POM used as baseline. The suggested quantitative ecological information of the majority of biological communities in Nakdong River would be helpful to understand the response of river food web to environmental disturbances and can be applied to various further researches regarding the quantitative approaches for the understanding food web structure and function of river ecosystems as well as restoration.

본 연구에서는 낙동강 5개 보의 상류 및 하류 총 6개 지점(상주보, 강정고령보, 달성보, 합천창녕보, 창녕함안보 상류와 합천창녕보 하류)에서 서식 생물의 탄소 및 질소 안정동위원소 비를 분석, 낙동강 생태계 구조를 정량적으로 파악하고자 하였다. 대상 생물은 식물플랑크톤을 포함하는 입자성유기물(부유 및 부착), 동물플랑크톤, 저서성 대형무척추동물 및 어류를 포함하며, 강우 전 갈수기(6월) 와 강우 직후(9월), 두 차례에 걸쳐 시료를 채집, 안정동위원소 비를 분석하였다. 채집된 생물의 탄소 안정동위원소 비의 범위를 비교하고 질소 안정동위원소 비를 이용하여 각 생물의 영양단계를 산출, 시공간 분포를 분석하였다. 동물플랑크톤과 저서성 대형무척추동물은 상류에 위치한 상주보에서 높은 값을 나타낸 후 점차 감소하여 하류의 창녕함안보에서 다시 증가하는 경향을 나타냈다. 이들 값은 홍수 전과 후, 상이한 값을 나타내어 하절기 홍수로 인한 육상 기원 유기물의 영향을 받는 것으로 조사되었으나, 그 반응은 생물군에 따라 상이한 것으로 분석되었다. 질소 안정동위원소 비를 이용해 계산된 각 생물들의 영양단계는 그 기준(baseline)으로 POM보다 동물플랑크톤을 이용하는 것이 보다 타당한 범위를 보이는 것으로 나타났다. 본 논문에서는 생태계 먹이망 구조 해석에 대한 정략적 접근에 요구되는 주요 생물군의 생태정보를 제공하여 향후 생태계 반응을 평가, 예측하는 다양한 연구분석에 활용될 수 있도록 하였다.

Keywords

Acknowledgement

Supported by : 국립환경과학원

References

  1. Bronmark, C. and L. A. Hansson. 2017. The biology of lakes and ponds. Oxford University Press. 68.
  2. Calderon, M.S. and K.G. An. 2016. An influence of mesohabitat structures (pool, riffle, and run) and land-use pattern on the index of biological integrity in the Geum River watershed. Journal of Ecology and Environment 40: 13. https://doi.org/10.1186/s41610-016-0018-8
  3. Chang, K.H., D.I. Seo, S.M. Go, M. Sakamoto, G.S. Nam, J.Y. Choi, M.S. Kim, K.S. Jeong, G.H. La and H.W. Kim. 2016. Feeding behavior of crustaceans (Cladocera, Copepoda and Ostracoda): food selection measured by stable isotope analysis using R package SIAR in mesocosm experiment. Korean Journal of Ecology and Environment 49(4): 279-288. https://doi.org/10.11614/KSL.2016.49.4.279
  4. Chikaraishi, Y., N.O. Ogawa, Y. Kashiyama, Y. Takano, H. Suga, A. Tomitani, H. Miyashita, H. Kitazato and N. Ohkouchi. 2009. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnology and Oceanography: methods 7 (11): 740-750. https://doi.org/10.4319/lom.2009.7.740
  5. Choi, B. and K.H. Shin. 2018. Applications and prospects of stable isotope in aquatic ecology and environmental study. Korean Journal of Ecology and Environment 51(1): 96-104. https://doi.org/10.11614/KSL.2018.51.1.096
  6. Choi, H., B. Choi and K.H. Shin. 2017. Determination of trophic position using nitrogen isotope ration of individual amino acid in the Geum estuary. Korean Journal of Ecology and Environment 50(4): 432-440. https://doi.org/10.11614/KSL.2017.50.4.432
  7. Choi, J.Y., S.K. Kim, S.W. Hong, K.S. Jeong, G.H. La and G.J. Joo. 2013. Zooplankton community distribution and food web structure in small reservoirs: influence of land uses around reservoirs and kittoral aquatic plant on zooplankton. Korean Journal of Ecology and Environment 46(3): 332-342. https://doi.org/10.11614/KSL.2013.46.3.332
  8. Chun, S.H., C.B. Kim, W.R. Kim, S.G. Park and S.K. Chae. 2015. Analysis of Stream Environmental Assessment Systems in Korea: focus on the biological aspect. Ecology and Resilient Infrastructure 2(2): 108-117. https://doi.org/10.17820/eri.2015.2.2.108
  9. Doi, H., K.H. Chang, T. Ando, I. Ninomiya, H. Imai and S.I. Nakano. 2009. Resource availability and ecosystem size predict food-chain length in pond ecosystems. Oikos 118 (1): 138-144. https://doi.org/10.1111/j.1600-0706.2008.17171.x
  10. Fry, B. 1991. Stable isotope diagrams of freshwater food webs. Ecology 72(6): 2293-2297. https://doi.org/10.2307/1941580
  11. Gal, J.K., M.S. Kim, Y.J. Lee, J. Seo and K.H. Shin. 2012. Foodweb of aquatic ecosystem within the Tamjin River through the determination of carbon and nitrogen stable isotope ratios. Korean Journal of Limnology 45(2): 242-251.
  12. Gal, J.K., G. Ock, H.K. Park and K.H. Shin. 2016. The effect of summer monsoon on pelagic and littoral food webs in a large regulated reservoir (Lake Paldang, Korea): a stable isotope approach. Journal of Freshwater Ecology 31(3): 327-340. https://doi.org/10.1080/02705060.2015.1136967
  13. Hiramatsu, K., K. Yonebayashi, E. Ichion, S. Nishimura and T. Onishi. 2014. Food web structure in an agricultural drain age channel through an urbanized zone in Japan. Paddy and Water Environment 12: 113-123.
  14. Hur, J., M.H. Jang, K.H. Shin, K.L. Lee and K.H. Chang. 2018. Ecological Niche Space of Fish Communities in Impounded Sections of Large Rivers: Its Application to Assessment of the Impact of Weirs on River Ecosystems. Sustainability 10(12): 4784. https://doi.org/10.3390/su10124784
  15. Jo, H., E. Jeppesen, M. Ventura, T. Buchaca, J.S. Gim, J.D. Yoon, D.H. Kim and G.J. Joo. 2019. Responses of fish assemblage structure to large-scale weir construction in riverine ecosystems. Science of the Total Environment 657: 1334-1342. https://doi.org/10.1016/j.scitotenv.2018.11.446
  16. Kautza, A. and S.M.P. Sullivan. 2016. Anthropogenic and natural determinants of fish food-chain length in a midsize river system. Freshwater Science 35(3): 895-908. https://doi.org/10.1086/685932
  17. Kendall, C. 1998. Tracing nitrogen sources and cycling in catchments. Elsevier. 519-576.
  18. Kim, E., H. Kim, K.H. Shin, M.S. Kim, S.R. Kundu, B.G. Lee and S. Han. 2012. Biomagnification of mercury through the benthic food webs of a temperate estuary: Masan Bay, Korea. Environmental Toxicology and Chemistry 31(6): 1254-1263. https://doi.org/10.1002/etc.1809
  19. Kim, J.K. and W.H. Hong. 1992. Studies on the physical environmental factor analysis for water quality management in man-made lake of Korea. Journal of Environmental Science International 1(2): 49-57.
  20. Kim, M.S., J.Y. Hwang, O.S. Kwon and W.S. Lee. 2013. Analytical methodology of stable isotopes ratios: Sample pretreatment, analysis and application. Korean Journal of Ecology and Environment 46: 471-487. https://doi.org/10.11614/KSL.2013.46.4.471
  21. Kim, M.S., Y.J. Lee, K.G. An, B.H. Kim, S.J. Hwang and K.H. Shin. 2014a. Allochthonous organic matter contribution to foodweb in Shingu agricultural reservoir after rainfall period. Korean Journal of Ecology and Environment 47(1): 53-61. https://doi.org/10.11614/KSL.2014.47.1.053
  22. Kim, M.S., J.M. Kim, J.Y. Hwang, B.K. Kim, H.S. Cho, S.J. Youn, S.Y. Hong, O.S. Kwon and W.S. 2014b. Determination of the origin of particulate organic matter at the lake Paldang using stable isotope ratio (${\delta}13C$, ${\delta}15N$). Korean Journal of Ecology and Environment 47(2): 127-134. https://doi.org/10.11614/KSL.2014.47.2.127
  23. Kim, U.J., H. Jo, I.S. Lee, G.J. Joo and J.E. Oh. 2015. Investigation of bioaccumulation and biotransformation of poybrominated diphenyl ethers, hydroxylated and methoxylated derivatives in varying trophic level freshwater fishes. Chemosphere 137: 108-114. https://doi.org/10.1016/j.chemosphere.2015.05.104
  24. Kong, D., S.H. Son, S.J. Hwang, D.H. Won, M.C. Kim, J.H. Park, T.S. Jeon, J.E. Lee, J.H. Kim, J.S. Kim, J. Park, I.S. Kwak, Y.C. Jun, Y.S. Park, S.A. Ham, J.K. Lee, S.W. Lee, C.H. Park, J.S. Moon, JY. Kim, H.K. Park, S.J. Park, Y. Kwon, P. Kim. and R. Kim. 2018. Development of benthic macroinvertebrates index (BMI) for biological assessment on stream environment. Journal of Korean Society on Water Environment 34: 183-201. https://doi.org/10.15681/KSWE.2018.34.2.183
  25. Lee, H.G and Y.J. Bae. 2011. Recovery of aquatic insect communities after a catastrophic flood in a Korean stream. Animal Cells and Systems 15: 169-177. https://doi.org/10.1080/19768354.2011.555121
  26. Lorrain, A., B.S. Graham, B.N. Popp, V. Allain, R.J. Olson, B.P. Hunt, M. Potier, B. Fry, F. Galvan-Magana, C.E. Menkes, S. Kaehler and F. Menard. 2015. Nitrogen isotopic baselines and implications for estimating foraging habitat and trophic position of yellowfin tuna in the Indian and Pacific Oceans. Deep Sea Research Part II: Topical Studies in Oceanography 113: 188-198. https://doi.org/10.1016/j.dsr2.2014.02.003
  27. Masson, S. and B. Pinel-Alloul. 2000. Total phosphorus-chlorophyll a size fraction relationships in southern Quebec lakes. Limnology and Oceanography 45(3): 732-740. https://doi.org/10.4319/lo.2000.45.3.0732
  28. Ministry of Environment. 2009. Stream/River ecosystem survey and health assessment (III). NIER.
  29. Na, E.H., S. Park, J. Kim, S. Im and K. Kim. 2015. A study on spatial and temporal patterns of water quality in the middle area of the Nakdong River, Korea. Journal of Korean Society on Water Environment 31(6): 723-731. https://doi.org/10.15681/KSWE.2015.31.6.723
  30. Park, H.K., M.S. Byeon, Y.N. Shin and D.I. Jung. 2009. Sources and spatial and temporal characteristics of organic carbon in two large reservoirs with contrasting hydrologic characteristics. Water Resources Research 45(11): W11418. https://doi.org/10.1029/2009WR008043
  31. Persaud, A.D., P.J. Dillon, L.A. Molot and K.E. Hargan. 2012. Relationships between body size and trophic position of consumers in temperate freshwater lakes. Aquatic Sciences 74: 203-212. https://doi.org/10.1007/s00027-011-0212-9
  32. Post, D.M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83(3): 703-718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
  33. Recknagel, F. 2006. Ecological informatics. Springer-Verlag Berlin Heidelberg. 3-10.
  34. Ruhi, A., V. Acuna, D. Barcelo, B. Huerta, J.R. Mor, S. Rodriguez-Mozaz and S. Sabater. 2016. Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web. Science of the Total Environment 540: 250-259. https://doi.org/10.1016/j.scitotenv.2015.06.009
  35. Saigo, M., F.L. Zilli, M.R. Marchese and D. Demonte. 2015. Trophic level, food chain length and omnivory in the Parana River: a food web model approach in a floodplain river system. Ecological Research 30(5): 843-852. https://doi.org/10.1007/s11284-015-1283-1
  36. Stockner, J.G. and N.J. Antia. 1986. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Canadian Journal of Fisheries and Aquatic Sciences 43: 2472-2503. https://doi.org/10.1139/f86-307
  37. Thorp, J.H. and A.F. Casper. 2003. Importance of biotic interactions in large rivers: an experiment with planktivorous fish, dreissenid mussels and zooplankton in the St. Lawrence River. River Research and Applications 19(3): 265-279. https://doi.org/10.1002/rra.703
  38. Vander Zanden, M.J., G. Cabana and J.B. Rasmussen. 1997. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios and literature dietary data. Canadian Journal of Fisheries and Aquatic Sciences 54(5): 1142-1158. https://doi.org/10.1139/f97-016
  39. Vander Zanden, M.J. and J.B. Rasmussen. 2001. Variation in ${\delta}15N$ and ${\delta}13C$ trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46(8): 2061-2066. https://doi.org/10.4319/lo.2001.46.8.2061
  40. Won, E.J., B. Choi, S. Hong, J.S. Khim and K.H. Shin. 2018. Importance of accurate trophic level determination bv nitrogen isotope of amino acids for trophic magnification studies: a review. Environmental Pollution 238: 677-690. https://doi.org/10.1016/j.envpol.2018.03.045
  41. Xia, X., J. Chen, R. Braun and Y. Tang. 2013. Isotopic reversals with respect to maturity trends due to mixing of primary and secondary products in source rocks. Chemical Geology 339: 205-212. https://doi.org/10.1016/j.chemgeo.2012.07.025
  42. Yoon, J.D., S.H. Park, K.H. Chang, J.Y. Choi, G.J. Joo, G.S. Nam, J. Yoon and M.H. Jang. 2015. Characteristics of fish fauna in the lower Geum River and identification of trophic guilds using stable isotopes analysis. Korean Journal of Environment and Biology 33(1): 34-44. https://doi.org/10.11626/KJEB.2015.33.1.034