DOI QR코드

DOI QR Code

Evaluation of elemental concentrations of uranium, thorium and potassium in top soils from Kuwait

  • Bajoga, A.D. (Department of Physics, Gombe State University) ;
  • Al-Dabbous, A.N. (Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research) ;
  • Abdullahi, A.S. (Department of Geology, Faculty of Earth and Environmental Sciences, Bayero University) ;
  • Alazemi, N.A. (Environmental Radiation Protection Laboratory, Qadesiya) ;
  • Bachama, Y.D. (Department of Geology, Gombe State University) ;
  • Alaswad, S.O. (Nuclear Science Research Institute (NSRI), National Center for Nuclear Technology, King Abdulaziz City for Science and Technology)
  • Received : 2019.01.04
  • Accepted : 2019.04.29
  • Published : 2019.09.25

Abstract

Top soil samples across the state of Kuwait numering ninety were collected and analysed using gamma-ray spectrometry, to evaluate the elemental concentration of $^{238}U$, $^{232}Th$ and $^{40}K$ and their depletion/enrichment. Results of elemental concentration ranges from 0.48 to 2.61 mg/kg, 0.87-5.23 mg/kg, and 0.24-2.23%, with a mean values of 1.39 mg/kg, 3.47 mg/kg, and 1.18%, for the $^{238}U$, $^{232}Th$ and $^{40}K$, respectively. Further analysis was conducted amongst the five identified soil types, i.e. Aquisalids (S1), Calcigypsids (S2), Petrocalcids (S3), Petrogypsids (S4), and torripsamment (S5). The highest radioactivity concentrations from both uranium and thorium were recorded in the S2 (Calcigypsids) soil, with a value of 1.71 (mg/kg) and 4.45 (mg/kg), respectively. Minimum and maximum values of $^{40}K$ are 1.1(%) and 1.27(%) and is prevalent in Aquisalids (S1) and Petrocalcids (S3) soil types, respectively. Ratios of elemental concentration for $^{232}Th/^{238}U$, $^{40}K/^{238}U$, $^{40}K/^{232}Th$ across the soil types are 2.53, 0.09 and 0.03, with a correlation coefficient of 0.92, 0.34, and 0.38, respectively. A progressively higher $^{232}Th/^{238}U$ ratio is observed moving south-wards, indicating lower $^{238}U$ content in soils from the south relative to the northern part. Overall results indicate Kuwait to be relatively an area with low level of natural radioactivity.

Keywords

References

  1. N. Ahmad, L. Matiullah, A.H. Khataibeh, Indoor radon levels and natural radioactivity in Jordanian soil, Radiat. Protect. Dosim. 71 (3) (1997) 231-233. https://doi.org/10.1093/oxfordjournals.rpd.a032059
  2. J.M. Al-Awadhi, S.S. Omar, R.F. Misak, Land degradation indicators in Kuwait, J. Land Degradat. Dev. 16 (2005) 163-176. https://doi.org/10.1002/ldr.666
  3. J. Al-Awadhi, A. Hersi, Surface runoff hazard map distribution in Kuwait, Manag. Environ. Qual. Int. J. 17 (1) (2006) 20-30. https://doi.org/10.1108/14777830610639413
  4. N. Alazemi, A.D. Bajoga, D.A. Bradley, P.H. Regan, H. Shams, Soil radioactivity levels, radiological maps and risk assessment for the state of Kuwait, Chemosphere 154 (2016) 55-62. https://doi.org/10.1016/j.chemosphere.2016.03.057
  5. T.E. Attia, E.H. Shendi, M.A. Shehata, Assessment of natural and artificial radioactivity levels and radiation hazards and their relation to heavy metals in the industrial area of Port Said city, Egypt, Environ. Sci. Pollut. Res. 22 (4) (2015) 3082-3097. https://doi.org/10.1007/s11356-014-3453-z
  6. A.D. Bajoga, N. Alazemi, P.H. Regan, D.A. Bradley, Radioactive investigation of NORM samples from Southern Kuwait soil using high-resolution gamma-ray spectroscopy, Radiat. Phys. Chem. 116 (2015) 305-311. https://doi.org/10.1016/j.radphyschem.2015.01.041
  7. A.D. Bajoga, N. Alazemi, H. Shams, P.H. Regan, D.A. Bradley, Evaluation of naturally occurring radioactivity across the State of Kuwait using high- resolution gamma-ray spectrometry, Radiat. Phys. Chem. 137 (2016) 203-209. https://doi.org/10.1016/j.radphyschem.2016.02.013
  8. S. Bellia, M. Brai, S. Hauser, P. Puccio, S. Rizzo, Natural radioactivity in a volcanic island Ustica, Southern Italy, Appl. Radiat. Isot. 48 (1997) 287-293. https://doi.org/10.1016/S0969-8043(96)00150-9
  9. P. Chiozzi, V. Pasquale, M. Verdoya, Naturally occurring radioactivity at the Alps- Apennines transition, Radiat. Meas. 35 (2002) 147-154. https://doi.org/10.1016/S1350-4487(01)00288-8
  10. A.G. Darney, "Hot granites" some general remarks, in: Y.J. Maurice (Ed.), Uranium in Granites, Geol. Surv. Canada, 1982, pp. 1-10. Paper No. 81-23.
  11. F. De Corte, H. Umans, D. Vandenberghe, A. De Wispelaere, P. Van den haute, Direct gamma-spectrometric measurement of the $^{226}Ra$ 186.2 keV line for detecting $^{238}U$/$^{226}Ra$ disequilibrium in determining the environmental dose rate for the luminescence dating of sediments, Appl. Radiat. Isot. 63 (5-6) (2005) 589-598. https://doi.org/10.1016/j.apradiso.2005.05.008
  12. Y.Y. Ebaid, Use of gamma-ray spectrometry for uranium isotopic analysis in environ- mental samples, Rom. J. Phys. 55 (1-2) (2010) 68-74.
  13. G. Faure, Principles of Isotope Geology, second ed., John Wiley & Sons, 1986, 0471864129.
  14. M. Garcia-Talavera, Evaluation of the suitability of various ${\gamma}$ lines for the ${\gamma}$ spectrometric determination of $^{238}U$ in environmental samples, App. rad. and isot. 59 (2) (2003) 165-173. https://doi.org/10.1016/S0969-8043(03)00153-2
  15. P.W. Gray, A. Ahmad, Linear classes of Ge (Li) detector efficiency functions, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 237 (3) (1985) 577-589. https://doi.org/10.1016/0168-9002(85)91069-1
  16. IAEA TEC. DOC. no1363, Guidelines for Radioelement Mapping Using Gamma-Ray Spectrometry Data, International Atomic Energy Agency (IAEA), Vienna, 2003.
  17. G. Karahan, A. Bayulken, Assessment of gamma dose rates around Istanbul, J. Environ. Radioact. 47 (2000) 213-221. https://doi.org/10.1016/S0265-931X(99)00034-X
  18. D.J. Karangelos, M.J. Anagnostakis, E.P. Hinis, S.E. Simopoulos, Z.S. Zunic, Determination of depleted uranium in environmental samples by gammaspectroscopic techniques, J. Environ. Radioact. 76 (3) (2004) 295-310. https://doi.org/10.1016/j.jenvrad.2003.11.011
  19. KISR, General Geology of Kuwait, Kuwait Institute for Scientific Research, 1998 in association with, http://eMISK/EPA.www.emisk.org.kw.
  20. A. Martinez-Aguirre, M. Garcia-Leon, Radioactivity impact of phosphate ore processing in a wet marshland in southwestern Spain, J. Environ. Radioact. 34 (1997) 45-57. https://doi.org/10.1016/0265-931X(96)00015-X
  21. O. Maxwell, H. Wagiran, N. Ibrahim, S.K. Lee, S. Sabri, Comparison of activity concen- tration of 238U, 232Th and 40K in different Layers of subsurface Structures in Dei-Dei and Kubwa, Abuja, northcentral Nigeria, Radiat. Phys. Chem. 91 (2013) 70-80. October 2013. https://doi.org/10.1016/j.radphyschem.2013.05.006
  22. M.T. Menager, M.J. Heath, M. Ivanovich, C. Montjotin, C.R. Barillon, J. Camp, S.E. Hasler, Migration of uranium from uranium-mineralised fractures into the rock matrix in granite: implications for radionuclide transport around a radioactive waste repository, in: Fourth Inter. Conference of Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere (Migration 1993), Charleston, USA, 12-17. Radiochimica Acta 66/67, 1993, pp. 47-83.
  23. Milton, D. I., Geology of the Arabian peninsula." Kuwait: US Geological Survey, Professional Paper 560-F. 1967.
  24. M.V. Nageswara, S.S. Bhati, P. Rama Seshu, A.R. Reddy, Natural radioactivity in soil and radiation levels of Rajasthan, Radiat. Protect. Dosim. 63 (3) (1996) 207-216. https://doi.org/10.1093/oxfordjournals.rpd.a031531
  25. S.A. Omar, R. Misak, P. King, S.A. Shahid, H. Abo-Rizq, G. Grealish, W. Roy, Mapping the vegetation of Kuwait through reconnaisance soil survey, J. Arid Environ. 48 (3) (2001) 341-355. https://doi.org/10.1006/jare.2000.0740
  26. D.C. Radford, ESCL8R and LEVIT8R: software for interactive graphical analysis of HPGe coincidence data sets, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 361 (1-2) (1995) 297-305. https://doi.org/10.1016/0168-9002(95)00183-2
  27. J.J.W. Roger, J.A.S. Adams, Uranium, in: K.H. Wedephol (Ed.), Handbook of Geochemistry, Springer, Berlin, 1969 (Section 92 B-O).
  28. T. Santawamaitre, D. Malain, H.A. Al-Sulaiti, D.A. Bradley, M.C. Matthews, P.H. Regan, Determination of $^{238}U$, $^{232}Th$ and $^{40}K$ activity concentrations in riverbank soil along the Chao Phraya river basin in Thailand, J. Environ. Radioact. (2014) 138.
  29. M. Tzortzis, H. Tsertos, Determination of thorium, uranium and potassium elemental concen- trations in surface soils in Cyprus, J. Environ. Radioact. 77 (2004) 325-338. https://doi.org/10.1016/j.jenvrad.2004.03.014
  30. UNSCEAR, Sources and Effects of Ionizing Radiation. Report to General Assembly, with Scientific Annexes, United Nations, New York, 2000.
  31. UN, Map No. 4405, united nations, 2010. http://www.un.org/Depts/Cartographic/map/profile/kuwait.pdf.
  32. M. Verdoya, P. Chiozzi, V. Pasquale, Heat-producing radionuclides in metamorphic rocks of the brianconnais-piedmont zone (maritime alps), Eclogae Geol. Helv. 94 (2001) 1-7.
  33. W. Wahl, Radionuclide-Handbook - for Laboratory Workers in Spectrometry, Radiation Protection and Medicine Series, ISuS Publication, Institute for Spectrometry and for Radiation Protection, Schliersee, 2007.
  34. L. Yu-Ming, L. Pei-Huo, C. Ching-Jiang, H. Ching-Chung, Measurement of terrestrial gamma radiation in Taiwan, Republic of China, Health Phys. 52 (1987) 805-811.
  35. I.M. Omoniyi, S.M.B. Oludare, O.M. Oluwaseyi, Determination of Radionuclides and Elemental Composition of Clay Soils by Gamma- and X-Ray Spectrometry, SpringerPlus 2 (2013) 74, https://doi.org/10.1186/2193-1801-2-74.

Cited by

  1. Evaluation and assessment of 7 years of radioactivity monitoring data for Th232, Ra226, K40 on surface soil and the impact of the construction of mass rapid transit stations around pasar jumat nuclear vol.1436, 2020, https://doi.org/10.1088/1742-6596/1436/1/012041
  2. Radiation hazards and natural radioactivity levels in surface soil samples from dwelling areas of North Cyprus vol.324, pp.1, 2020, https://doi.org/10.1007/s10967-020-07069-w
  3. Different Approaches to Purify the 185.7 keV of 235U from Contribution of Another Overlapping γ-Transition vol.18, pp.2, 2019, https://doi.org/10.1134/s1547477121020060