과제정보
연구 과제 주관 기관 : Akdeniz University
참고문헌
- Aifantis, E.C. (1999), "Gradient deformation models at nano, micro, and macroscales", J. Eng. Mater. Technol., 121, 189-202. https://doi.org/10.1115/1.2812366
- Ak, C., Yildiz, A., Akdagli, A. and Bicer, M.B. (2017), "Computing the pull-in voltage of fixed-fixed micro-actuators by artificial neural network", Microsyst. Technol., 23(8), 3537-3546. https://doi.org/10.1007/s00542-016-3128-4
- Akgoz, B. and Civalek, O. (2011), "Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories", J. Comput. Theor. Nanostruct., 8(9), 1821-1827. https://doi.org/10.1166/jctn.2011.1888
- Akgoz, B. and Civalek, O. (2013a), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., Int. J., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195
- Akgoz, B. and Civalek, O. (2013b), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020
- Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
- Amar, L.H.H., Kaci, A., Yeghnem, R. and Tounsi, A. (2018), "A new four-unknown refined theory based on modified couple stress theory for size-dependent bending and vibration analysis of functionally graded micro-plate", Steel Compos. Struct., Int. J., 26(1), 89-102. https://doi.org/10.12989/scs.2018.26.1.089
- Anandrao, K.S., Gupta, R.K., Ramchandran, P. and Rao, G.V. (2010), "Thermal post-buckling analysis of uniform slender functionally graded material beams", Struct. Eng. Mech., Int. J., 36(5), 545-560. https://doi.org/10.12989/sem.2010.36.5.545
- Arefi, M. (2018), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., Int. J., 27(4), 479-493. https://doi.org/10.12989/scs.2018.27.4.479
- Atmane, H.A., Tounsi, A., Ziane, N. and Mechab, I. (2011), "Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section", Steel Compos. Struct., Int. J., 11(6), 489-504. https://doi.org/10.12989/scs.2011.11.6.489
- Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
- Aydogdu, M. (2008), "Semi-inverse method for vibration and buckling of axially functionally graded beams", J. Reinforced Plast. Comp., 27(7), 683-691. https://doi.org/10.1177/0731684407081369
- Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
- Bennai, R., Atmane, H.A. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., Int. J., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521
- Boeing (2019), https://www.boeing.com/commercial/787/bydesign/#/advanced-composite-use
- Ebrahimi, F. and Mahmoodi, F. (2019), "A modified couple stress theory for buckling analysis of higher order inhomogeneous microbeams with porosities", Proc. Inst. Mech. Eng. C-J. Mech. Eng. Sci., 233(8), 2855-2866. https://doi.org/10.1177/0954406218791642
- Ehyaei, J. and Akbarizadeh, M.R. (2017), "Vibration analysis of micro composite thin beam based on modified couple stress", Struct. Eng. Mech., Int. J., 64(4), 403-411.
- Eringen, A.C. (1967), "Theory of micropolarplates", Z. Angew. Math. Phys., 18, 12-30. https://doi.org/10.1007/BF01593891
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803
- Fleck, N.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids, 41, 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N
- Fleck, N.A. and Hutchinson, J.W. (2001), "A reformulation of strain gradient plasticity", J. Mech. Phys. Solids, 49, 2245-2271. https://doi.org/10.1016/S0022-5096(01)00049-7
- Ghayesh, M.H. (2018a), "Mechanics of tapered AFG sheardeformable microbeams", Microsyst. Technol., 24(4), 1743-1754. https://doi.org/10.1007/s00542-018-3764-y
- Ghayesh, M.H. (2018b), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Model., 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017
- Ghayesh, M.H. (2018c), "Nonlinear vibrations of axially functionally graded Timoshenko tapered beams", J. Comput. Nonlinear Dyn., 13(4), 041002. https://doi.org/10.1115/1.4039191
- Ghayesh, M.H. (2018d), "Vibration analysis of shear-deformable AFG imperfect beams", Compos. Struct., 200, 910-920. https://doi.org/10.1016/j.compstruct.2018.03.091
- Ghayesh, M.H. (2019), "Resonant dynamics of axially functionally graded imperfect tapered Timoshenko beams", J. Vib. Control, 25(2), 336-350. https://doi.org/10.1177/1077546318777591
- Ghayesh, M.H. and Farokhi, H. (2018a), "Bending and vibration analyses of coupled axially functionally graded tapered beams", Nonlinear Dyn., 91(1), 17-28. https://doi.org/10.1007/s11071-017-3783-8
- Ghayesh, M.H. and Farokhi, H. (2018b), "Mechanics of tapered axially functionally graded shallow arches", Compos. Struct., 188, 233-241. https://doi.org/10.1016/j.compstruct.2017.11.017
- Ghayesh, M.H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2017), "Nonlinear bending and forced vibrations of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 120, 51-62. https://doi.org/10.1016/j.ijengsci.2017.03.010
- Gusso, A., Viana, R.L., Mathias, A.C. and Caldas, I.L. (2019), "Nonlinear dynamics and chaos in micro/ nanoelectromechanical beam resonators actuated by two-sided electrodes", Chaos Soliton Fract., 122, 6-16. https://doi.org/10.1016/j.chaos.2019.03.004
- Hadi, A., Nejad, M.Z., Rastgoo, A. and Hosseini, M. (2018), "Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory", Steel Compos. Struct., Int. J., 26(6), 663-672. https://doi.org/10.12989/scs.2018.26.6.663
- Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
- Hamzehkolaei, N.S., Malekzadeh, P. and Vaseghi, J. (2011), "Thermal effect on axisymmetric bending of functionally graded circular and annular plates using DQM", Steel Compos. Struct., Int. J., 11(4), 341-358. https://doi.org/10.12989/scs.2011.11.4.341
- He, X.J., Wu, Q., Wang, Y., Song, M.X. and Yin, J.H. (2009), "Numerical simulation and analysis of electrically actuated microbeam-based MEMS capacitive switch", Microsyst. Technol., 15(2), 301-307. https://doi.org/10.1007/s00542-008-0702-4
- Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., Int. J., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013
- Jahangiri, R., Jahangiri, H. and Khezerloo, H. (2015), "FGM micro-gripper under electrostatic and intermolecular Van-der Waals forces using modified couple stress theory", Steel Compos. Struct., Int. J., 18(6), 1541-1555. https://doi.org/10.12989/scs.2015.18.6.1541
- Jia, X.L., Ke, L.L., Zhong, X.L., Sun, Y., Yang, J. and Kitipornchai, S. (2018), "Thermal-mechanical-electrical buckling behavior of functionally graded micro-beams based on modified couple stress theory", Compos. Struct., 202, 625-634. https://doi.org/10.1016/j.compstruct.2018.03.025
- Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., Int. J., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201
- Khaniki, H.B. and Rajasekaran, S. (2018), "Mechanical analysis of non-uniform bi-directional functionally graded intelligent microbeams using modified couple stress theory", Mater. Res. Express., 5(5), 055703. https://doi.org/10.1088/2053-1591/aabe62
- Khorshidi, M.A., Shariati, M. and Emam, S.A. (2016), "Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory", Int. J. Mech. Sci., 110, 160-169. https://doi.org/10.1016/j.ijmecsci.2016.03.006
- Kiani, Y. and Eslami, M.R. (2010), "Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des., 6(3), 229-238. https://doi.org/10.1007/s10999-010-9132-4
- Kocaturk, T. and Akbas, S.D. (2013), "Thermal post-buckling analysis of functionally graded beams with temperaturedependent physical properties", Steel Compos. Struct., Int. J., 15(5), 481-505. https://doi.org/10.12989/scs.2013.15.5.481
- Koiter, W.T. (1964), "Couple stresses in the theory of elasticity", I and II. Proc. K. Ned. Akad. Wet. B, 67, 17-44.
- Kong, S., Zhou, S., Nie, Z. and Wang, K. (2009), "Static and dynamic analysis of micro beams based on strain gradient elasticity theory", Int. J. Eng. Sci., 47, 487-498. https://doi.org/10.1016/j.ijengsci.2008.08.008
- Lam, D.C.C. and Chong, A.C.M. (2001), "Model and experiments on strain gradient hardening in metallic glass", Mat. Sci. Eng. AStruct., 318(1-2), 313-319. https://doi.org/10.1016/S0921-5093(01)01329-6
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Lee, H.L. and Chang, W.J. (2009), "Effects of damping on the vibration frequency of atomic force microscope cantilevers using the Timoshenko beam model", Jpn. J. Appl. Phys., 48(6), 065005. https://doi.org/10.1143/JJAP.48.065005
- Lei, J., He, Y.M., Guo, S., Li, Z.K. and Liu, D.B. (2016), "Sizedependent vibration of nickel cantilever microbeams: Experiment and gradient elasticity", Aip. Adv., 6(10), 105202. https://doi.org/10.1063/1.4964660
- Li, B., Tang, X.S., Xie, H.M. and Xin, Z. (2004), "Strain analysis in MEMS/NEMS structures and devices by using focused ion beam system", Sensor Actuator A-Phys., 111(1), 57-62. https://doi.org/10.1016/j.sna.2003.07.014
- Li, S.R., Zhang, J.H. and Zhao, Y.G. (2006), "Thermal postbuckling of functionally graded material Timoshenko beams", Appl. Math. Mech., 27(6), 803-810. https://doi.org/10.1007/s10483-006-0611-y
- Li, Z.K., He, Y.M., Lei, J., Guo, S., Liu, D.B. and Wang, L. (2018), "A standard experimental method for determining the material length scale based on modified couple stress theory", Int. J. Mech. Sci., 141, 198-205. https://doi.org/10.1016/j.ijmecsci.2018.03.035
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
- Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructuredependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids., 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
- Ma, H.M., Gao, X.L. and Reddy, J.N. (2010), "A nonclassical Reddy-Levinson beam model based on a modified couple stress theory", Int. J. Multiscale Comput. Eng., 8(2), 167-180. https://doi.org/10.1615/IntJMultCompEng.v8.i2.30
- Mahmoud, S.R. and Tounsi, A. (2017), "A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 24(5), 569-578. https://doi.org/10.12989/scs.2017.24.5.569
- Marques, L., da Silva, L.S. and Rebelo, C. (2014), "Rayleigh-Ritz procedure for determination of the critical load of tapered columns", Steel Compos. Struct., Int. J., 16(1), 47-60. https://doi.org/10.12989/scs.2014.16.1.047
- Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couplestresses in linear elasticity", Arch. Ration. Mech. Anal., 11, 415-448. https://doi.org/10.1007/BF00253946
- Nateghi, A., Salamat-talab, M., Rezapour, J. and Daneshian, B. (2012), "Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory", Appl. Math. Model., 36(10), 4971-4987. https://doi.org/10.1016/j.apm.2011.12.035
- Nazemnezhad, R. and Kamali, K. (2018), "Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory", Steel Compos. Struct., Int. J., 28(6), 749-758. https://doi.org/10.12989/scs.2018.28.6.749
- Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., Int. J., 29(3), 363-377. https://doi.org/10.12989/scs.2018.29.3.363
- Nguyen, N.T., Kim, N.I. and Lee, J. (2014), "Analytical solutions for bending of transversely or axially FG nonlocal beams", Steel Compos. Struct., Int. J., 17(5), 639-663. https://doi.org/10.12989/scs.2014.17.5.641
- Nguyen, K.T., Thai, T.H. and Vo, T.P. (2015), "A refined higherorder shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 91-120. https://doi.org/10.12989/scs.2015.18.1.091
- Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355-2359. https://doi.org/10.1088/0960-1317/16/11/015
- Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., Int. J., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239
- Payam, A.F. and Fathipour, M. (2009), "Modeling and dynamic analysis of atomic force microscope based on Euler-Bernoulli beam theory", Dig. J. Nanomater. Bios., 4(3), 565-578.
- Pradhan, K.K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B-Eng., 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027
- Rahmani, O., Deyhim, S. and Hosseini, S.A.H. (2018a), "Size dependent bending analysis of micro/nano sandwich structures based on a nonlocal high order theory", Steel Compos. Struct., Int. J., 27(3), 371-388. https://doi.org/10.12989/scs.2018.27.3.371
- Rahmani, O., Hosseini, S.A.H., Ghoytasi, I. and Golmohammadi, H. (2018b), "Free vibration of deep curved FG nano-beam based on modified couple stress theory", Steel Compos. Struct., Int. J., 26(5), 607-620. https://doi.org/10.12989/scs.2018.26.5.607
- Rezaiee-Pajand, M., Masoodi, A.R. and Alepaighambar, A. (2018), "Lateral-torsional buckling of functionally graded tapered Ibeams considering lateral bracing", Steel Compos. Struct., Int. J., 28(4), 403-414. https://doi.org/10.12989/scs.2018.28.4.403
- Sahraee, S. and Saidi, A.R. (2009), "Free vibration and buckling analysis of functionally graded deep beam-columns on twoparameter elastic foundations using the differential quadrature method", Proc. Inst. Mech. Eng. C-J. Mech. Eng. Sci., 223(6), 1273-1284. https://doi.org/10.1243/09544062JMES1349
- Saidi, H., Houari, M.S.A., Tounsi, A. and Bedia, E.A. (2013), "Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory", Steel Compos. Struct., Int. J., 15(2), 221-245. https://doi.org/10.12989/scs.2013.15.2.221
- Salamat-Talab, M., Nateghi, A. and Torabi, J. (2012), "Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory", Int. J. Mech. Sci., 57(1), 63-73. https://doi.org/10.1016/j.ijmecsci.2012.02.004
- Shafiei, N. and Kazemi, M. (2017), "Buckling analysis on the bidimensional functionally graded porous tapered nano-/microscale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019
- Shafiei, N. and She, G.L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004
- Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E, 83, 74-87. https://doi.org/10.1016/j.physe.2016.04.011
- Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007
- Shafiei, N., Mousavi, A. and Ghadiri, M. (2016c), "On sizedependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007
- Shafiei, N., Kazemi, M. and Fatahi, L. (2017), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., 24(3), 240-252. https://doi.org/10.1080/15376494.2015.1128025
- Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. https://doi.org/10.1080/15376494.2017.1365982
- She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory", Appl. Math. Model., 47, 340-357. https://doi.org/10.1016/j.apm.2017.03.014
- She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Eur. Phys. J. Plus, 133, 368. https://doi.org/10.1140/epjp/i2018-12196-5
- Simsek, M. (2011), "Forced vibration of an embedded singlewalled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., Int. J., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
- Simsek, M. (2012), "Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods", Comp. Mater. Sci., 61, 257-265. https://doi.org/10.1016/j.commatsci.2012.04.001
- Simsek, M. and Reddy, J.N. (2013), "A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory", Compos. Struct., 101, 47-58. https://doi.org/10.1016/j.compstruct.2013.01.017
- Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., Int. J., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259
- Thanh, C.L., Tran, L.V., Vu-Huu, T. and Abdel-Wahab, M. (2019), "The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis", Comput. Method. Appl. Mech., 350, 337-361. https://doi.org/10.1016/j.cma.2019.02.028
- Toupin, R.A. (1964), "Theories of elasticity with couple-stresses", Arch. Ration. Mech. Anal., 17, 85-112. https://doi.org/10.1007/BF00253050
- Vardoulakis, I. and Sulem, J. (1995), Bifurcation Analysis in Geomechanics, CRC Press.
- Wang, C.M., Wang, C.Y. and Reddy, J.N. (2005), Exact Solutions for Buckling of Structural Members, CRC Press.
- Wattanasakulpong, N., Prusty, B.G. and Kelly, D.W. (2011), "Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams", Int. J. Mech. Sci., 53(9), 734-743. https://doi.org/10.1016/j.ijmecsci.2011.06.005
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39, 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Younis, M.I., Abdel-Rahman, E.M. and Nayfeh, A. (2003), "A reduced-order model for electrically actuated microbeam-based MEMS", J. Microelectromech. Sci, 12(5), 672-680. https://doi.org/10.1109/JMEMS.2003.818069