참고문헌
- Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., Int. J., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485
-
Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneou concrete blocks mixed by
$SiO_2$ nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140 - Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, Int. J., 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567
- Bachiri, A., Bourada, M., Mahmoudi, A., Benyoucef, S. and Tounsi, A. (2018), "Thermodynamic effect on the bending response ofelastic foundation FG plate by using a novel fourvariable refined plate theory", J. Therm. Stress., 41(8), 1042-1062. https://doi.org/10.1080/01495739.2018.1452169
- Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, Int. J., 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053
- Bisen, H.B., Hirwani, C.K., Satankar, R.K., Panda, S.K., Mehar, K. and Patel, B. (2018), "Numerical study of frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation", J. Natural Fibers, 1-15. https://doi.org/10.1080/15440478.2018.1503129
- Boley, B.A. and Weiner, J.H. (1960), Theory of Thermal Stresses, John Wiley & Sons, New York, USA.
- Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four-variable refined plate theory for thermal bulcking of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386
- Cetkovic, M. (2015), "Thermo-mechanical bending of laminated composite and sandwich plates using layerwise displacement model", Compos. Struct., 125, 388-399. https://doi.org/10.1016/j.compstruct.2015.01.051
- Chattibi, F., Benrahou, K.H., Benachour, A., Nedri, K. and Tounsi, A. (2015), "Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory", Steel Compos. Struct., Int. J., 19, 93-110. https://doi.org/10.12989/scs.2015.19.1.093
- Chattibi, F., Benrahou, K.H., Benachour, A., Nedri, K. and Tounsi, A. (2015), "Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory", Steel Compos. Struct., Int. J., 19(1), 93-110. https://doi.org/10.12989/scs.2015.19.1.093
- Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055
- Dutta, G., Panda, S.K., Mahapatra, T.R. and Singh, V.K. (2017), "Electro-magneto-elastic response of laminated composite plate: a finite element approach", Int. J. Appl. Computat. Math., 3(3), 2573-2592. https://doi.org/10.1007/s40819-016-0256-6
- Fakhar, A. and Kolahchi, R. (2018), "Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates", Int. J. Mech. Sci., 144, 788-799. https://doi.org/10.1016/j.ijmecsci.2018.06.036
- Fares, M.E. and Zenkour, A.M. (1999), "Mixed variational formula for the thermal bending of laminated plates", J. Therm. Stress., 22,347-365. https://doi.org/10.1080/014957399280913
- Fares, M.E., Zenkour, A.M. and El-Marghani, M.Kh. (2000), "Non-linear thermal effects on the bending response of cross-ply laminated plates using refined first-order theory", Compos. Struct., 49, 257-267. https://doi.org/10.1016/S0263-8223(99)00137-3
- Gandhe, G.R., Salve, S.B., Pankade, P.M., Taur, P.G. and Tupe, D.H (2018), "Trigonometric shear deformation theory for thermal flexural analysis of isotropic plate", Procedia Manufact., 20, 499-504. https://doi.org/10.1016/j.promfg.2018.02.074
- Ghugal, Y.M. and Kulkarni, S.K. (2012), "Effect of aspect ratio on transverse displacements for orthotropic and twolayer laminated plates subjected to non-linear thermal loads and mechanical loads", Int. J. Civil Struct. Eng., 3(1), 186-192.
- Ghugal, Y.M. and Kulkarni, S.K. (2013a), "Thermal flexural analysis of cross- ply laminated platesusing trigonometric shear deformation theory", Latin Am. J. Solids Struct., 10, 1001-1023. http://dx.doi.org/10.1590/S1679-78252013000500008
- Ghugal, Y.M. and Kulkarni, S.K. (2013b), "Flexural analysis of cross-ply laminated plates subjectedto nonlinear thermal and mechanical loadings", Acta Mech., 224, 675-690. https://doi.org/10.1007/s00707-012-0774-1
- Ghugal, Y.M. and Kulkarni, S.K. (2013c), "Thermal response of symmetric cross-ply laminated plates subjected to linear and non-linear thermo-mechanical loads", J. Therm. Stress., 36, 466-479. https://doi.org/10.1080/01495739.2013.770664
-
Golabchi, H., Kolahchi, R., Rabani Bidgoli, M. (2018), "Vibration and instability analysis of pipes reinforced by
$SiO_2$ nanoparticles considering agglomeration effects", Comput. Concrete, Int. J., 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431 - Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636217720373
- Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018a), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002
- Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2018b), "Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory", Aerosp. Sci. Technol., 78, 260-270. https://doi.org/10.1016/j.ast.2018.04.030
- Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Maleki, M. (2018c), "Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects", Compos. Struct., 187, 498-508. https://doi.org/10.1016/j.compstruct.2017.12.004
- Han, J.W., Kim, J.S. and Cho, M. (2017), "New enhanced firstorder shear deformation theory for thermo-mechanical analysis of laminated and sandwich plates", Compos. Part B, 116, 422-450. https://doi.org/10.1016/j.compositesb.2016.10.087
- Hirwani, C.K. and Panda, S.K. (2018), "Numerical and experimental validation of nonlinear deflection and stress responses of pre-damaged glass-fibre reinforced composite structure", Ocean Eng., 159, 237-252. https://doi.org/10.1016/j.oceaneng.2018.04.035
- Hirwani, C.K., Mittal, H., Panda, S.K., Mahapatra, S.S., Mandal, S.K. and De, A.K. (2017), "Simulation study of stress and deformation behaviour of debonded laminated structure", IOP Conf. Series: Materials Science and Engineering, 178, 012005. https://doi.org/10.1088/1757-899X/178/1/012005
- Hirwani, C.K., Panda, S.K., Mahapatra, T.R., Mandal, S.K., Mahapatra, S.S. and De, A.K. (2018a), "Delamination effect on flexural responses of layered curved shallow shell panelexperimental and numerical analysis", Int. J. Computat. Methods, 15(4), 1850027. https://doi.org/10.1142/S0219876218500275
- Hirwani, C.K., Panda, S.K. and Mahapatra, T.R. (2018b), "Thermomechanical deflection and stress responses of delaminated shallow shell structure using higher-order theories", Compos. Struct., 184, 135-145. https://doi.org/10.1016/j.compstruct.2017.09.071
- Hirwani, C.K., Biswash, S., Mehar, K. and Panda, S.K. (2018c), "Numerical flexural strength analysis of thermally stressed delaminated composite structure under sinusoidal loading", IOP Conf. Series: Materials Science and Engineering, 338, 012019. https://doi.org/10.1088/1757-899X/338/1/012019
- Hirwani, C.K., Panda, S.K. and Patle, B.K. (2018d), "Theoretical and experimental validation of nonlinear deflection and stress responses of an internally debonded layer structure using different higher-order theories", Acta Mechanica, 229(8), 3453-3473. https://doi.org/10.1007/s00707-018-2173-8
- Hosseini, H. and Kolahchi, R. (2018), "Seismic response of functionally graded-carbon nanotubes-reinforced submerged viscoelastic cylindrical shell in hygrothermal environment", Physica E: Low-dimens. Syst. Nanostruct., 102, 101-109. https://doi.org/10.1016/j.physe.2018.04.037
- Jones, R.M. (1999), Mechanics of Composite Materials, Taylor and Francis, London, UK.
- Joshan, Y.S., Grover, N. and Singh, B.N. (2017), "A new nonpolynomial four variable shear deformation theory in axiomatic formulation for hygro-thermo-mechanical analysis of laminated composite plates", Compos. Struct., 182, 685-693. https://doi.org/10.1016/j.compstruct.2017.09.029
- Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygrothermo-mechanical loading", Steel Compos. Struct., Int. J., 19(4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011
- Katariya, P., Panda, S. and Mahapatra, T. (2018a), "Bending and vibration analysis of skew sandwich plate", Aircr. Eng. Aerosp. Technol., 90(6), 885-895. https://doi.org/10.1108/AEAT-05-2016-0087
- Katariya, P., Hirwani, C.K. and Panda, S. (2018b), "Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory", Eng. Comput., 35(2), 467-485. https://doi.org/10.1007/s00366-018-0609-3
- Khdeir, A.A. and Reddy, J.N.(1999), "Thermal stresses and deflections of cross-ply laminated plates using refined plate theories", J. Therm. Stress., 14(4), 419-438. https://doi.org/10.1080/01495739108927077
- Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016
- Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlinear Dyn., 90, 479-492. https://doi.org/10.1007/s11071-017-3676-x
- Kolahchi, R. and Moniri Bidgoli, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8
- Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compo. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032
- Kolahchi, R., Safari, M. and Esmailpour, M. (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
- Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017a), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016
- Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2017b), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-viscopiezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636217731071
- Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNTreinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
- Mahapatra, T.R. and Panda, S.K. (2016), "Hygrothermal effects on the flexural strength of laminated composite cylindrical panels", IOP Conference Series: Materials Science and Engineering, 115(1), 012040. https://doi.org/10.1088/1757-899X/115/1/012040
- Mahapatra, T.R., Kar, V. and Panda, S. (2016a), "Large amplitude bending behaviour of laminated composite curved panels", Eng. Computat., 33(1), 116-138. https://doi.org/10.1108/EC-05-2014-0119
- Mahapatra, T.R., Panda, S.K. and Kar, V. (2016b), "Nonlinear flexural analysis of laminated composite panel under hygrothermo-mechanical loading - A Micromechanical Approach", Int. J. Computat. Methods, 13(3), 1650015. https://doi.org/10.1142/S0219876216500158
- Mahapatra, T.R., Panda, S.K. and Kar, V. (2016c), "Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel", Int. J. Mech. Mater. Des., 12(2), 153-171. https://doi.org/10.1007/s10999-015-9299-9
- Mahapatra, T.R., Mehar, K., Panda, S.K., Dewangan, S. and Dash, S. (2017a), "Flexural strength of functionally graded nanotube reinforced sandwich spherical panel", IOP Conference Series: Materials Science and Engineering, 178(1), 012031. https://doi.org/10.1088/1757-899X/178/1/012031
- Mahapatra, T.R., Kar, V.R.., Panda, S.K. and Mehar, K. (2017b), "Nonlinear thermoelastic deflection of temperature-dependent FGM curved shallow shell under nonlinear thermal loading", J. Thermal Stresses, 40(9), 1184-1199. https://doi.org/10.1088/1757-899X/178/1/012031
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018), "Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method", Scientia Iranica, 25(5), 2722-2737. https://doi.org/10.24200/SCI.2017.4525
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2019), "Large deformation bending responses of nanotube-reinforced polymer composite panel structure: Numerical and experimental analyses", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(5), 1695-1704. https://doi.org/10.1177/0954410018761192
- Reddy, J.N. (1997), Mechanics of Laminated Composite Plates, CRC Press, Boca Raton, New York, London, Tokyo.
- Reddy, J.N. and Hsu, Y.S. (1980), "Effect of shear deformation and anisotropy on the thermal bending of layered composite plates", J. Therm. Stress., 3(4), 475-493. https://doi.org/10.1080/01495738008926984
- Sahoo, S.S., Panda, S.K. and Mahapatra, T.R. (2017a), "Static, free vibration and transient response of laminated composite curved shallow panel - An experimental approach", Eur. J. Mech.-A/Solids, 59, 95-113. https://doi.org/10.1016/j.euromechsol.2016.03.014
- Sahoo, S.S., Panda, S.K., Singh, V.K. and Mahapatra, T.R. (2017b), "Numerical investigation on the nonlinear flexural behaviour of wrapped glass/epoxy laminated composite panel and experimental validation", Arch. Appl. Mech., 87(2), 315-333. https://doi.org/10.1007/s00419-016-1195-8
- Saidi, H., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2013), "Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory", Steel Compos. Struct., Int. J., 15(2), 221-245. https://doi.org/10.12989/scs.2013.15.2.221
- Sayyad, A.S., Shinde, B.M. and Ghugal, Y.M. (2014), "Thermoelastic bending analysis of laminatedcomposite plates according to various sheardeformation theories", Open Eng., 5, 18-30.
- Sayyad, A.S., Ghugal, Y.M. and Mhaske, B.A. (2015), "A four-Variable plate theory for thermoelastic bending of laminated composites plates", J. Therm. Stress., 38(8), 904-925. https://doi.org/10.1080/01495739.2015.1040310
- Sayyad, A.S., Ghugal, Y.M. and Shinde, B.M. (2016), "Thermal stress analysis of laminated composite plates using exponential shear deformation theory", Int. J. Auto. Compos., 2(1), 23-40.
- Sharma, N., Lalepalli, A.K., Hirwani, C.K., Das, A. and Panda, S.K. (2019), "Optimal deflection and stacking sequence prediction of curved composite structure using hybrid (FEM and soft computing) technique", Eng. Comput. https://doi.org/10.1007/s00366-019-00836-8
- Shinde, B.M., Sayyad, A.S. and Kawade, A.B. (2013), "Thermal analysis of isotropic plates using hyperbolic shear deformation theory", Appl. Computat. Mech., 7, 193-204.
- Singh, V.K., Mahapatra, T.R. and Panda, S.K. (2016), "Nonlinear flexural analysis of single/doubly curved smart composite shell panels integrated with PFRC actuator", Eur. J. Mech.-A/Solids, 60, 300-314. https://doi.org/10.1016/j.euromechsol.2016.08.006
- Wu, C.H. and Tauchert, T.R. (1890), "Thermo-elastic analysis of laminated plates.1: Symmetric specially orthotropic laminates", J. Therm. Stress., 3(2), 247-259. https://doi.org/10.1080/01495738008926966
-
Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with
$SiO_2$ nano-particles", Wind Struct., Int. J., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043 - Zenkour, A.M. (2004), "Analytical solution for bending of crossply laminated plates underthermo-mechanical loading", Compos. Struct., 65, 367-379. https://doi.org/10.1016/j.compstruct.2003.11.012
- Zenkour, A.M. and Alghamdi, N.A. (2008), "Thermoelastic bending analysis of functionally graded sandwich plates", J. Mater. Sci., 43(8), 2574-2589. https://doi.org/10.1007/s10853-008-2476-6
- Zhen, W. and Chen, W.J. (2006), "An effcient higher-order theory and finite element forlaminated plates subjected to thermal loading", Compos. Struct., 73, 99-109. https://doi.org/10.1016/j.compstruct.2005.01.034
- Zhen, W. and Xiaohui, R. (2016), "Thermomechanical analysis of multilayered plates in terms of Reddy-type higher-order theory", Mech. Adv. Mater. Struct., 24(14), 1196-1205. https://doi.org/10.1080/15376494.2016.1227491
피인용 문헌
- A Spline Finite Point Method for Nonlinear Bending Analysis of FG Plates in Thermal Environments Based on a Locking-free Thin/Thick Plate Theory vol.2020, 2019, https://doi.org/10.1155/2020/2943705
- Multiphysical theoretical prediction and experimental verification of vibroacoustic responses of fruit fiber‐reinforced polymeric composite vol.41, pp.11, 2020, https://doi.org/10.1002/pc.25724
- A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications vol.11, pp.6, 2019, https://doi.org/10.12989/mwt.2020.11.6.399
- Stressing State Analysis of Reinforcement Concrete Beams Strengthened with Carbon Fiber Reinforced Plastic vol.14, pp.1, 2019, https://doi.org/10.1186/s40069-020-00417-w
- Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2019, https://doi.org/10.12989/amr.2020.9.4.265
- Dynamic analysis of a laminated composite beam under harmonic load vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.563
- Experimental and analytical study on continuous GFRP-concrete decks with steel bars vol.76, pp.6, 2019, https://doi.org/10.12989/sem.2020.76.6.737
- Geometrical Influences on the Vibration of Layered Plates vol.2021, 2019, https://doi.org/10.1155/2021/8843358
- Thermal frequency analysis of FG sandwich structure under variable temperature loading vol.77, pp.1, 2019, https://doi.org/10.12989/sem.2021.77.1.057
- Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature vol.38, pp.2, 2019, https://doi.org/10.12989/scs.2021.38.2.213
- Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2019, https://doi.org/10.12989/sem.2021.77.2.217
- Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell vol.10, pp.2, 2019, https://doi.org/10.12989/anr.2021.10.2.175
- Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2019, https://doi.org/10.12989/csm.2021.10.1.061
- Simplified approach to estimate the lateral torsional buckling of GFRP channel beams vol.77, pp.4, 2019, https://doi.org/10.12989/sem.2021.77.4.523
- Electromagnetic field and initial stress on a porothermoelastic medium vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.001
- A five-variable refined plate theory for thermal buckling analysis of composite plates vol.3, pp.2, 2019, https://doi.org/10.12989/cme.2021.3.2.135
- Stress analysis of a pre-stretched orthotropic plate with finite dimensions vol.45, pp.2, 2021, https://doi.org/10.1139/tcsme-2019-0241
- Dynamic damage analysis of a ten-layer circular composite plate subjected to low-velocity impact vol.21, pp.3, 2019, https://doi.org/10.1007/s43452-021-00238-y
- Surface wave scattering analysis in an initially stressed stratified media vol.38, pp.8, 2019, https://doi.org/10.1108/ec-03-2020-0133