DOI QR코드

DOI QR Code

Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings

  • Belbachir, Nasrine (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Draich, Kada (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Bousahla, Abdelmoumen Anis (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Bourada, Mohamed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Mohammadimehr, M. (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • 투고 : 2019.01.10
  • 심사 : 2019.09.29
  • 발행 : 2019.10.10

초록

The present paper addresses a refined plate theoryin order to describe the response of anti-symmetric cross-ply laminated plates subjected to a uniformlydistributed nonlinear thermo-mechanical loading. In the present theory, the undetermined integral terms are used and the variables number is reduced to four instead of five or more in other higher-order theories. The boundary conditions on the top and the bottom surfaces of the plate are satisfied; hence the use of the transverse shear correction factors isavoided. The principle of virtual work is used to obtain governing equations and boundary conditions. Navier solution for simply supported plates is used to derive analytical solutions. For the validation of the present theory, numerical results for displacements and stressesare compared with those of classical, first-order, higher-order and trigonometricshear theories reported in the literature.

키워드

참고문헌

  1. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., Int. J., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485
  2. Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneou concrete blocks mixed by $SiO_2$ nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140
  3. Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, Int. J., 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567
  4. Bachiri, A., Bourada, M., Mahmoudi, A., Benyoucef, S. and Tounsi, A. (2018), "Thermodynamic effect on the bending response ofelastic foundation FG plate by using a novel fourvariable refined plate theory", J. Therm. Stress., 41(8), 1042-1062. https://doi.org/10.1080/01495739.2018.1452169
  5. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, Int. J., 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053
  6. Bisen, H.B., Hirwani, C.K., Satankar, R.K., Panda, S.K., Mehar, K. and Patel, B. (2018), "Numerical study of frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation", J. Natural Fibers, 1-15. https://doi.org/10.1080/15440478.2018.1503129
  7. Boley, B.A. and Weiner, J.H. (1960), Theory of Thermal Stresses, John Wiley & Sons, New York, USA.
  8. Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four-variable refined plate theory for thermal bulcking of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386
  9. Cetkovic, M. (2015), "Thermo-mechanical bending of laminated composite and sandwich plates using layerwise displacement model", Compos. Struct., 125, 388-399. https://doi.org/10.1016/j.compstruct.2015.01.051
  10. Chattibi, F., Benrahou, K.H., Benachour, A., Nedri, K. and Tounsi, A. (2015), "Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory", Steel Compos. Struct., Int. J., 19, 93-110. https://doi.org/10.12989/scs.2015.19.1.093
  11. Chattibi, F., Benrahou, K.H., Benachour, A., Nedri, K. and Tounsi, A. (2015), "Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory", Steel Compos. Struct., Int. J., 19(1), 93-110. https://doi.org/10.12989/scs.2015.19.1.093
  12. Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055
  13. Dutta, G., Panda, S.K., Mahapatra, T.R. and Singh, V.K. (2017), "Electro-magneto-elastic response of laminated composite plate: a finite element approach", Int. J. Appl. Computat. Math., 3(3), 2573-2592. https://doi.org/10.1007/s40819-016-0256-6
  14. Fakhar, A. and Kolahchi, R. (2018), "Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates", Int. J. Mech. Sci., 144, 788-799. https://doi.org/10.1016/j.ijmecsci.2018.06.036
  15. Fares, M.E. and Zenkour, A.M. (1999), "Mixed variational formula for the thermal bending of laminated plates", J. Therm. Stress., 22,347-365. https://doi.org/10.1080/014957399280913
  16. Fares, M.E., Zenkour, A.M. and El-Marghani, M.Kh. (2000), "Non-linear thermal effects on the bending response of cross-ply laminated plates using refined first-order theory", Compos. Struct., 49, 257-267. https://doi.org/10.1016/S0263-8223(99)00137-3
  17. Gandhe, G.R., Salve, S.B., Pankade, P.M., Taur, P.G. and Tupe, D.H (2018), "Trigonometric shear deformation theory for thermal flexural analysis of isotropic plate", Procedia Manufact., 20, 499-504. https://doi.org/10.1016/j.promfg.2018.02.074
  18. Ghugal, Y.M. and Kulkarni, S.K. (2012), "Effect of aspect ratio on transverse displacements for orthotropic and twolayer laminated plates subjected to non-linear thermal loads and mechanical loads", Int. J. Civil Struct. Eng., 3(1), 186-192.
  19. Ghugal, Y.M. and Kulkarni, S.K. (2013a), "Thermal flexural analysis of cross- ply laminated platesusing trigonometric shear deformation theory", Latin Am. J. Solids Struct., 10, 1001-1023. http://dx.doi.org/10.1590/S1679-78252013000500008
  20. Ghugal, Y.M. and Kulkarni, S.K. (2013b), "Flexural analysis of cross-ply laminated plates subjectedto nonlinear thermal and mechanical loadings", Acta Mech., 224, 675-690. https://doi.org/10.1007/s00707-012-0774-1
  21. Ghugal, Y.M. and Kulkarni, S.K. (2013c), "Thermal response of symmetric cross-ply laminated plates subjected to linear and non-linear thermo-mechanical loads", J. Therm. Stress., 36, 466-479. https://doi.org/10.1080/01495739.2013.770664
  22. Golabchi, H., Kolahchi, R., Rabani Bidgoli, M. (2018), "Vibration and instability analysis of pipes reinforced by $SiO_2$ nanoparticles considering agglomeration effects", Comput. Concrete, Int. J., 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431
  23. Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636217720373
  24. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018a), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002
  25. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2018b), "Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory", Aerosp. Sci. Technol., 78, 260-270. https://doi.org/10.1016/j.ast.2018.04.030
  26. Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Maleki, M. (2018c), "Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects", Compos. Struct., 187, 498-508. https://doi.org/10.1016/j.compstruct.2017.12.004
  27. Han, J.W., Kim, J.S. and Cho, M. (2017), "New enhanced firstorder shear deformation theory for thermo-mechanical analysis of laminated and sandwich plates", Compos. Part B, 116, 422-450. https://doi.org/10.1016/j.compositesb.2016.10.087
  28. Hirwani, C.K. and Panda, S.K. (2018), "Numerical and experimental validation of nonlinear deflection and stress responses of pre-damaged glass-fibre reinforced composite structure", Ocean Eng., 159, 237-252. https://doi.org/10.1016/j.oceaneng.2018.04.035
  29. Hirwani, C.K., Mittal, H., Panda, S.K., Mahapatra, S.S., Mandal, S.K. and De, A.K. (2017), "Simulation study of stress and deformation behaviour of debonded laminated structure", IOP Conf. Series: Materials Science and Engineering, 178, 012005. https://doi.org/10.1088/1757-899X/178/1/012005
  30. Hirwani, C.K., Panda, S.K., Mahapatra, T.R., Mandal, S.K., Mahapatra, S.S. and De, A.K. (2018a), "Delamination effect on flexural responses of layered curved shallow shell panelexperimental and numerical analysis", Int. J. Computat. Methods, 15(4), 1850027. https://doi.org/10.1142/S0219876218500275
  31. Hirwani, C.K., Panda, S.K. and Mahapatra, T.R. (2018b), "Thermomechanical deflection and stress responses of delaminated shallow shell structure using higher-order theories", Compos. Struct., 184, 135-145. https://doi.org/10.1016/j.compstruct.2017.09.071
  32. Hirwani, C.K., Biswash, S., Mehar, K. and Panda, S.K. (2018c), "Numerical flexural strength analysis of thermally stressed delaminated composite structure under sinusoidal loading", IOP Conf. Series: Materials Science and Engineering, 338, 012019. https://doi.org/10.1088/1757-899X/338/1/012019
  33. Hirwani, C.K., Panda, S.K. and Patle, B.K. (2018d), "Theoretical and experimental validation of nonlinear deflection and stress responses of an internally debonded layer structure using different higher-order theories", Acta Mechanica, 229(8), 3453-3473. https://doi.org/10.1007/s00707-018-2173-8
  34. Hosseini, H. and Kolahchi, R. (2018), "Seismic response of functionally graded-carbon nanotubes-reinforced submerged viscoelastic cylindrical shell in hygrothermal environment", Physica E: Low-dimens. Syst. Nanostruct., 102, 101-109. https://doi.org/10.1016/j.physe.2018.04.037
  35. Jones, R.M. (1999), Mechanics of Composite Materials, Taylor and Francis, London, UK.
  36. Joshan, Y.S., Grover, N. and Singh, B.N. (2017), "A new nonpolynomial four variable shear deformation theory in axiomatic formulation for hygro-thermo-mechanical analysis of laminated composite plates", Compos. Struct., 182, 685-693. https://doi.org/10.1016/j.compstruct.2017.09.029
  37. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygrothermo-mechanical loading", Steel Compos. Struct., Int. J., 19(4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011
  38. Katariya, P., Panda, S. and Mahapatra, T. (2018a), "Bending and vibration analysis of skew sandwich plate", Aircr. Eng. Aerosp. Technol., 90(6), 885-895. https://doi.org/10.1108/AEAT-05-2016-0087
  39. Katariya, P., Hirwani, C.K. and Panda, S. (2018b), "Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory", Eng. Comput., 35(2), 467-485. https://doi.org/10.1007/s00366-018-0609-3
  40. Khdeir, A.A. and Reddy, J.N.(1999), "Thermal stresses and deflections of cross-ply laminated plates using refined plate theories", J. Therm. Stress., 14(4), 419-438. https://doi.org/10.1080/01495739108927077
  41. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016
  42. Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlinear Dyn., 90, 479-492. https://doi.org/10.1007/s11071-017-3676-x
  43. Kolahchi, R. and Moniri Bidgoli, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8
  44. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compo. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032
  45. Kolahchi, R., Safari, M. and Esmailpour, M. (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
  46. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017a), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016
  47. Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2017b), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-viscopiezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636217731071
  48. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNTreinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
  49. Mahapatra, T.R. and Panda, S.K. (2016), "Hygrothermal effects on the flexural strength of laminated composite cylindrical panels", IOP Conference Series: Materials Science and Engineering, 115(1), 012040. https://doi.org/10.1088/1757-899X/115/1/012040
  50. Mahapatra, T.R., Kar, V. and Panda, S. (2016a), "Large amplitude bending behaviour of laminated composite curved panels", Eng. Computat., 33(1), 116-138. https://doi.org/10.1108/EC-05-2014-0119
  51. Mahapatra, T.R., Panda, S.K. and Kar, V. (2016b), "Nonlinear flexural analysis of laminated composite panel under hygrothermo-mechanical loading - A Micromechanical Approach", Int. J. Computat. Methods, 13(3), 1650015. https://doi.org/10.1142/S0219876216500158
  52. Mahapatra, T.R., Panda, S.K. and Kar, V. (2016c), "Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel", Int. J. Mech. Mater. Des., 12(2), 153-171. https://doi.org/10.1007/s10999-015-9299-9
  53. Mahapatra, T.R., Mehar, K., Panda, S.K., Dewangan, S. and Dash, S. (2017a), "Flexural strength of functionally graded nanotube reinforced sandwich spherical panel", IOP Conference Series: Materials Science and Engineering, 178(1), 012031. https://doi.org/10.1088/1757-899X/178/1/012031
  54. Mahapatra, T.R., Kar, V.R.., Panda, S.K. and Mehar, K. (2017b), "Nonlinear thermoelastic deflection of temperature-dependent FGM curved shallow shell under nonlinear thermal loading", J. Thermal Stresses, 40(9), 1184-1199. https://doi.org/10.1088/1757-899X/178/1/012031
  55. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057
  56. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018), "Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method", Scientia Iranica, 25(5), 2722-2737. https://doi.org/10.24200/SCI.2017.4525
  57. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2019), "Large deformation bending responses of nanotube-reinforced polymer composite panel structure: Numerical and experimental analyses", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(5), 1695-1704. https://doi.org/10.1177/0954410018761192
  58. Reddy, J.N. (1997), Mechanics of Laminated Composite Plates, CRC Press, Boca Raton, New York, London, Tokyo.
  59. Reddy, J.N. and Hsu, Y.S. (1980), "Effect of shear deformation and anisotropy on the thermal bending of layered composite plates", J. Therm. Stress., 3(4), 475-493. https://doi.org/10.1080/01495738008926984
  60. Sahoo, S.S., Panda, S.K. and Mahapatra, T.R. (2017a), "Static, free vibration and transient response of laminated composite curved shallow panel - An experimental approach", Eur. J. Mech.-A/Solids, 59, 95-113. https://doi.org/10.1016/j.euromechsol.2016.03.014
  61. Sahoo, S.S., Panda, S.K., Singh, V.K. and Mahapatra, T.R. (2017b), "Numerical investigation on the nonlinear flexural behaviour of wrapped glass/epoxy laminated composite panel and experimental validation", Arch. Appl. Mech., 87(2), 315-333. https://doi.org/10.1007/s00419-016-1195-8
  62. Saidi, H., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2013), "Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory", Steel Compos. Struct., Int. J., 15(2), 221-245. https://doi.org/10.12989/scs.2013.15.2.221
  63. Sayyad, A.S., Shinde, B.M. and Ghugal, Y.M. (2014), "Thermoelastic bending analysis of laminatedcomposite plates according to various sheardeformation theories", Open Eng., 5, 18-30.
  64. Sayyad, A.S., Ghugal, Y.M. and Mhaske, B.A. (2015), "A four-Variable plate theory for thermoelastic bending of laminated composites plates", J. Therm. Stress., 38(8), 904-925. https://doi.org/10.1080/01495739.2015.1040310
  65. Sayyad, A.S., Ghugal, Y.M. and Shinde, B.M. (2016), "Thermal stress analysis of laminated composite plates using exponential shear deformation theory", Int. J. Auto. Compos., 2(1), 23-40.
  66. Sharma, N., Lalepalli, A.K., Hirwani, C.K., Das, A. and Panda, S.K. (2019), "Optimal deflection and stacking sequence prediction of curved composite structure using hybrid (FEM and soft computing) technique", Eng. Comput. https://doi.org/10.1007/s00366-019-00836-8
  67. Shinde, B.M., Sayyad, A.S. and Kawade, A.B. (2013), "Thermal analysis of isotropic plates using hyperbolic shear deformation theory", Appl. Computat. Mech., 7, 193-204.
  68. Singh, V.K., Mahapatra, T.R. and Panda, S.K. (2016), "Nonlinear flexural analysis of single/doubly curved smart composite shell panels integrated with PFRC actuator", Eur. J. Mech.-A/Solids, 60, 300-314. https://doi.org/10.1016/j.euromechsol.2016.08.006
  69. Wu, C.H. and Tauchert, T.R. (1890), "Thermo-elastic analysis of laminated plates.1: Symmetric specially orthotropic laminates", J. Therm. Stress., 3(2), 247-259. https://doi.org/10.1080/01495738008926966
  70. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with $SiO_2$ nano-particles", Wind Struct., Int. J., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043
  71. Zenkour, A.M. (2004), "Analytical solution for bending of crossply laminated plates underthermo-mechanical loading", Compos. Struct., 65, 367-379. https://doi.org/10.1016/j.compstruct.2003.11.012
  72. Zenkour, A.M. and Alghamdi, N.A. (2008), "Thermoelastic bending analysis of functionally graded sandwich plates", J. Mater. Sci., 43(8), 2574-2589. https://doi.org/10.1007/s10853-008-2476-6
  73. Zhen, W. and Chen, W.J. (2006), "An effcient higher-order theory and finite element forlaminated plates subjected to thermal loading", Compos. Struct., 73, 99-109. https://doi.org/10.1016/j.compstruct.2005.01.034
  74. Zhen, W. and Xiaohui, R. (2016), "Thermomechanical analysis of multilayered plates in terms of Reddy-type higher-order theory", Mech. Adv. Mater. Struct., 24(14), 1196-1205. https://doi.org/10.1080/15376494.2016.1227491

피인용 문헌

  1. A Spline Finite Point Method for Nonlinear Bending Analysis of FG Plates in Thermal Environments Based on a Locking-free Thin/Thick Plate Theory vol.2020, 2019, https://doi.org/10.1155/2020/2943705
  2. Multiphysical theoretical prediction and experimental verification of vibroacoustic responses of fruit fiber‐reinforced polymeric composite vol.41, pp.11, 2020, https://doi.org/10.1002/pc.25724
  3. A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications vol.11, pp.6, 2019, https://doi.org/10.12989/mwt.2020.11.6.399
  4. Stressing State Analysis of Reinforcement Concrete Beams Strengthened with Carbon Fiber Reinforced Plastic vol.14, pp.1, 2019, https://doi.org/10.1186/s40069-020-00417-w
  5. Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2019, https://doi.org/10.12989/amr.2020.9.4.265
  6. Dynamic analysis of a laminated composite beam under harmonic load vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.563
  7. Experimental and analytical study on continuous GFRP-concrete decks with steel bars vol.76, pp.6, 2019, https://doi.org/10.12989/sem.2020.76.6.737
  8. Geometrical Influences on the Vibration of Layered Plates vol.2021, 2019, https://doi.org/10.1155/2021/8843358
  9. Thermal frequency analysis of FG sandwich structure under variable temperature loading vol.77, pp.1, 2019, https://doi.org/10.12989/sem.2021.77.1.057
  10. Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature vol.38, pp.2, 2019, https://doi.org/10.12989/scs.2021.38.2.213
  11. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2019, https://doi.org/10.12989/sem.2021.77.2.217
  12. Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell vol.10, pp.2, 2019, https://doi.org/10.12989/anr.2021.10.2.175
  13. Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2019, https://doi.org/10.12989/csm.2021.10.1.061
  14. Simplified approach to estimate the lateral torsional buckling of GFRP channel beams vol.77, pp.4, 2019, https://doi.org/10.12989/sem.2021.77.4.523
  15. Electromagnetic field and initial stress on a porothermoelastic medium vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.001
  16. A five-variable refined plate theory for thermal buckling analysis of composite plates vol.3, pp.2, 2019, https://doi.org/10.12989/cme.2021.3.2.135
  17. Stress analysis of a pre-stretched orthotropic plate with finite dimensions vol.45, pp.2, 2021, https://doi.org/10.1139/tcsme-2019-0241
  18. Dynamic damage analysis of a ten-layer circular composite plate subjected to low-velocity impact vol.21, pp.3, 2019, https://doi.org/10.1007/s43452-021-00238-y
  19. Surface wave scattering analysis in an initially stressed stratified media vol.38, pp.8, 2019, https://doi.org/10.1108/ec-03-2020-0133