Abstract
In the pooling stage of a full reference image quality assessment (FR-IQA) technique, the global perceived quality for any distorted image is usually measured from the quality of its local image patches. But all the image patches do not have equal contribution when estimating the overall visual quality since the degree of degradation on those patches depends on various considerations i.e., types of the patches, types of the distortions, distortion sensitivities of the patches, saliency score of the patches, etc. As a result, weighted pooling strategy comes into account and different weighting mechanisms are used by the existing FR-IQA methods. This paper performs a thorough analysis and proposes a novel weighting function by considering the luminance adaptation as well as the visual saliency effect to offer more appropriate local weights, which can be adopted in the existing FR-IQA frameworks to improve their prediction accuracy. The extended experimental results show the effectiveness of the proposed weighting function.
완전 참조 영상 화질(full-reference image quality assessment, FR-IQA)측정의 풀링 과정에 있어서, 한 영상의 전역 화질은 각 국부 패치의 측정된 화질값들로부터 측정된다. 그러나 한 영상의 전체 화질 값을 예측함에 있어서 국부 패치의 종류, 왜곡 타입, 왜곡의 인지 민감도, 국부 패치의 관심 집중(saliency) 정도에 따라 국부 패치가 전체 영상에 기여하는 왜곡의 정도가 다를 수 있다. 그 결과, 계산된 국부 패치 화질값에 대한 가중치 풀링 방법이 기존 FR-IQA 방법에서 고려되었다. 본 논문은 기존 FR-IQA 방법에서 고려되지 않은 시각인지시스템의 특성인, 광적응 효과 와 시각 관심 집중 효과를 고려한 새로운 가중치 풀링 방법을 제안한다. 실험 결과, 기존 FR-IQA 방법에 적용될 경우 예측 성능을 향상시킴을 확인하였으며, 이는 제안하는 가중치 풀링 방법은 사람의 시각인지 특성을 효과적으로 반영하기 때문으로 사료된다.