DOI QR코드

DOI QR Code

Developing the Questionnaire to Measure the Perception of the Norms of Science and Applying to Pre-service Science Teachers

과학 규범에 관한 인식 측정 도구 개발 및 예비 과학교사 대상 적용

  • Received : 2019.04.01
  • Accepted : 2019.07.17
  • Published : 2019.08.31

Abstract

This study aims to develop and apply questionnaire to identify pre-service science teachers' level of norms of science based on CUDOs, a scientific norm presented by R. Merton. In addition, we compared the pre-service science teachers' perception of scientific norm by major, grade, and gender, and analyzed the types of scientific norms through cluster analysis. For the study, 260 pre-service science teachers from two universities were involved. First, based on the CUDOs of R. Merton, 32 questionnaire items from six domains (pursuit of personal interests through scientific research, the pursuit of national interests through scientific research, pursuit of universal welfare through scientific research, non-communalism, non-universalism, and anti-organized skepticism) were developed. The study found that the statistical validity and reliability of the questionnaire items were acceptable. There were no significant differences in the scores of pre-service science teachers' anti-scientific norm by gender, major, and academic year. We conducted a cluster analysis and identified three types of scientific norms (traditional scientific norm, modern pragmatism, and utilitarian views).

이 연구는 R. Merton이 제시한 과학 규범인 CUDOs에 기반을 두고 예비교사들의 과학 규범 인식을 알아보기 위한 검사도구를 개발하고 적용하기 위하여 진행되었다. 전공별, 학년별, 성별에 따라 과학 예비 교사들의 과학 규범에 대한 인식을 비교하고, 군집분석을 통해 과학 규범에 대한 인식의 유형을 분석하였다. 이 연구를 위해 두 개 대학교의 260명의 예비과학교사가 참가하였다. 먼저 Merton의 CUDOs를 토대로 탈이해관계, 공유성, 보편성, 조직화된 회의를 구인으로 하고, 탈이해관계의 수준을 개인, 국가, 인류로 하여 총 6개 구인의 32개 문항이 개발되었다. 과학연구를 통한 개인적 이익 추구에 대한 인식, 과학연구를 통한 국가적 이익 추구에 대한 인식, 과학연구를 통한 전인류적 복지 추구에 대한 인식, 과학지식과 기술의 비공유주의적 인식, 과학의 반보편적 태도에 대한 인식, 과학의 반회의적 태도에 대한 인식으로 문항이 구성되었다. 연구 결과 개발된 문항의 통계적 타당도와 신뢰도는 적합한 것으로 확인되었다. 성별, 전공별, 학년별 과학 규범 인식에 대한 점수 비교 결과 성별, 전공별, 학년별 의미있는 차이는 없었다. 예비과학교사들의 과학 규범적 신념을 근거로 유형 분석을 실시하였고, 전통적 과학주의, 현대적 실용주의, 공리주의적 관점을 확인하였다.

Keywords

References

  1. Asilomar. (2017). Available at: https://futureoflife.org/ai-principles/
  2. Anderson, M. S., Martinson, B. C., & De Vries, R. (2007). Normative dissonance in science: Results from a national survey of US scientists. Journal of Empirical Research on Human Research Ethics, 2(4), 3-14. https://doi.org/10.1525/jer.2007.2.4.3
  3. Bak, H. J. (2010). Factors affecting the selection of research topics among Korean scientists - Pure scientific concern, external interests or peer recognition. Economy & Society, 85, 211-236.
  4. Bak, H. J. (2006). Commercialization of science and changing normative structure of scientific community. Korean Journal of Sociology, 40(4), 19-47.
  5. Bak, H. J. (2007). Perceptions and evaluation of norms of science among Korean scientific community. Journal of Science & Tecnology Studies, 7(2), 91-124.
  6. Bernard, P., & Dudek, K. (2017). Revisiting students' perceptions of research scientist - outcomes of an indirect draw-a-scientist test (INDAST). Journal of Baltic Science Education, 16(4), 562-575.
  7. Boone, W. J., Staver, J. R., & Yale, M. S. (2014). Rasch Analysis in the Human Sciences. New York, NY: Springer.
  8. Bray, D., & von Storch, H. (1999). Climate science: An empirical example of postnormal science. Bulletin of the American Meteorological Society, 80(3), 439-456. https://doi.org/10.1175/1520-0477(1999)080<0439:CSAEEO>2.0.CO;2
  9. Bray, D., & von Storch, H. (2017). The Normative Orientations of Climate Scientists. Science and Engineering Ethics, 23(5), 1351-1367. https://doi.org/10.1007/s11948-014-9605-1
  10. Broome, T. H., & Peirce, J. (1997). The heroic engineer. Journal of Engineering Education, 86, 51-55. https://doi.org/10.1002/j.2168-9830.1997.tb00265.x
  11. Chambers, D. W. (1983). Stereotypic images of the scientist: The draw-ascientist test. Science Education, 67(2), 255-265. https://doi.org/10.1002/sce.3730670213
  12. Choi, K. H. (2005). Contemplation of Scientist's Social Role, Responsibility and its Educational Methods. Journal of Science & Technology Studies, 10, 49-67.
  13. Galison, P. (1997). Image and logic: A material culture of microphysics. Chicago: University of Chicago Press.
  14. Gaston, J. (1978). The reward system in British and American science. New York: A Wiley-Interscience Publication.
  15. George, D., & Mallery, P. (2003). SPSS for windows step by step: A simple guide and reference 11.0 update. Boston, MA: Allyn and Bacon.
  16. Hagstrom, W. O. (1965). The scientific community. New York: Basic Books.
  17. Irzik, G., & Nola, R. (2011). A family resemblance approach to the nature of science for science education. Science & Education, 20, 591-607. https://doi.org/10.1007/s11191-010-9293-4
  18. Kilinc, A., Demiral, U., & Kartal, T. (2017). Resistance to dialogic discourse in SSI teaching: The effects of an argumentation-based workshop, teaching practicum, and induction on a preservice science teacher. Journal of Research in Science Teaching, 54(6), 764-789. https://doi.org/10.1002/tea.21385
  19. Kim, H. S. (2012). Climate change, science and community. Public Understanding of Science, 21(3), 268-285. https://doi.org/10.1177/0963662511421711
  20. Kreuter, F., Presser, S., & Tourangeau, R. (2008). Social Desirability Bias in CATI, IVR, and Web SurveysThe Effects of Mode and Question Sensitivity. Public opinion quarterly, 72(5), 847-865. https://doi.org/10.1093/poq/nfn063
  21. Krumpal, I. (2013). Determinants of social desirability bias in sensitive surveys: A literature review. Quality & Quantity, 47(4), 2025-2047. https://doi.org/10.1007/s11135-011-9640-9
  22. Lederman, N. G., Schwartz, R. S., Abd-El-Khalick, F., & Bell, R. L. (2001). Pre-service teachers' understanding and teaching of nature of science: An intervention study. Canadian Journal of Math, Science & Technology Education, 1(2), 135-160. https://doi.org/10.1080/14926150109556458
  23. Lee, J. K., Lee, T. K., & Ha M. (2013). Exploring the Evolution Patterns of Trading Zones Appearing in the Convergence of Teachers' Ideas: The Case Study of a Learning Community of Teaching Volunteers 'STEAM Teacher Community. Journal of the Korean Association for Research in Science Education, 33(5), 1055-1084. https://doi.org/10.14697/jkase.2013.33.5.1055
  24. Lee, Y. H. (2003). Beyond the ‘Science Wars': New direction of sociology of science. Economy and Society, 60, 195-217.
  25. Macfarlane, B., & Cheng, M. (2008). Communism, universalism and disinterestedness: Re-examining contemporary support among academics for Merton's scientific norms. Journal of Academic Ethics, 6(1), 67-78. https://doi.org/10.1007/s10805-008-9055-y
  26. Merton, R. K. (1973). The sociology of science. University of Chicago Press.
  27. Mesci, G., & Renee'S, S. (2017). Changing preservice science teachers' views of nature of science: why some conceptions may be more easily altered than others. Research in Science Education, 47(2), 329-351. https://doi.org/10.1007/s11165-015-9503-9
  28. Messick, S. (1995). Standards of validity and the validity of standards in performance assessment. Educational Measurement: Issues and Practice, 14(4), 5-8. https://doi.org/10.1111/j.1745-3992.1995.tb00881.x
  29. MEST (Ministry of Education, Science, and Technology). (2011). 2009 revised science curriculum. Seoul: MEST.
  30. Ministry of Education. (2015). 2015 revised Science National Curriculum. Ministry of Education.
  31. Mitroff, I. (1974). Norm and counter-norm in a selected group of the Apollo moon scientists. American Sociological Review, 39, 579-595. https://doi.org/10.2307/2094423
  32. MOE (Ministry of education). (2015). 2015 revised national curriculum of science. Seoul: Ministry of Education.
  33. Mulkay, M. J. (1976). Norms and ideologies in science. Social Science Information, 15, 637-656. https://doi.org/10.1177/053901847601500406
  34. Narayan, R., Park, S., Peker, D., & Suh, J. (2013). Students' images of scientists and doing science: An international comparison study. Eurasia Journal of Mathematics, Science & Technology Education, 9(2), 115-129.
  35. Nederhof, A. J. (1985). Methods of coping with social desirability bias: A review. European journal of social psychology, 15(3), 263-280. https://doi.org/10.1002/ejsp.2420150303
  36. Oreskes, N. (1996). Objectivity or heroism? On the invisivility of woman in science. Osiris, 11, 87-113. https://doi.org/10.1086/368756
  37. Palmquist, B. C., & Finley, F. N. (1997). Preservice teachers' views of the nature of science during a postbaccalaureate science teaching program. Journal of Research in Science Teaching, 34(6), 595-615. https://doi.org/10.1002/(SICI)1098-2736(199708)34:6<595::AID-TEA4>3.0.CO;2-I
  38. Polanyi, M. (1962). The republic of science. Minerva, 1(1), 54-73. https://doi.org/10.1007/BF01101453
  39. Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). mclust 5: Clustering, classification and density estimation using gaussian finite mixture models. The R journal, 8(1), 289-317. https://doi.org/10.32614/RJ-2016-021
  40. Shin, S., Lee, J. K., & Ha, M. (2016). Pre-service biology teachers' value orientation related to observation and representation: Focus on objectivity. Journal of the Korean Association for Science Education, 36(4), 617-628. https://doi.org/10.14697/jkase.2016.36.4.0617
  41. Sismondo, S. (2004). An introduction to science and technology studies. Oxford: Blackwell Publishing.
  42. Smith, C. H. L. (1999). International collaboration in science and technology: Lessons from CERN. European Review, 7(1), 77-92. https://doi.org/10.1017/S1062798700003756
  43. Stohr, K. (2003). A multicentre collaboration to investigate the cause of severe acute respiratory syndrome. The Lancet, 361, 1730-1733. https://doi.org/10.1016/S0140-6736(03)13376-4
  44. Torresen, J. (2018). A review of future and ethical perspectives of robotics and AI. Frontiers in Robotics and AI, 4(75), 1-10. https://doi.org/10.3389/frobt.2017.00075
  45. Vermeulen, N., Parker, J. N., & Penders, B. (2013). Understanding life together: A brief history of collaboration in biology. Endeavour, 37(3), 162-171. https://doi.org/10.1016/j.endeavour.2013.03.001
  46. White, R., & Wallace, J. (1999). Heroism and science education reform. Research in Science Education, 29(4), 417-430. https://doi.org/10.1007/BF02461587
  47. Wright, B.D. & Linacre, J.M. (1994). Reasonable mean-square-fit values. Rasch Measurement Transactions, 8(3), 370.
  48. Zeidler, D. L., & Nichols, B. H. (2009). Socioscientific issues: Theory and practice. Journal of Elementary Science Education, 21(2), 49-58. https://doi.org/10.1007/BF03173684
  49. Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based, framework for socioscientific issues education. Science Education, 89, 357- 377. https://doi.org/10.1002/sce.20048
  50. Ziman, J. (2000). Real science: What it is, and what it means. Cambridge: Cambridge University Press.