References
- Amar, L.H.H., Kaci, A. and Tounsi, A. (2017), "On the sizedependent behavior of functionally graded micro-beams with porosities", Struct. Eng. Mech., 64(5), 527-541. https://doi.org/10.12989/sem.2017.64.5.527.
- Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.
- Bacciocchi, M., Eisenberger, M., Fantuzzi, N., Tornabene, F. and Viola, E. (2016), "Vibration analysis of variable thickness plates and shells by the generalized differential quadrature method", Compos. Struct., 156, 218-237. https://doi.org/10.1016/j.compstruct.2015.12.004.
- Barati, M.R. (2017), "Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermomechanical loading using nonlocal strain gradient theory", Struct. Eng. Mech., 64(6), 683-693. https://doi.org/10.12989/sem.2017.64.6.683.
- Batra, R., Qian, L. and Chen, L. (2004), "Natural frequencies of thick square plates made of orthotropic, trigonal, monoclinic, hexagonal and triclinic materials", J. Sound Vib., 270(4-5), 1074-1086. https://doi.org/10.1016/S0022-460X(03)00625-4.
- Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695.
- Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397.
- Chaudhuri, R.A. (2012), "Three-dimensional singular stress/residual stress fields at crack/anticrack fronts in monoclinic plates under antiplane shear loading", Eng. Fracture Mech., 87, 16-35. https://doi.org/10.1016/j.engfracmech.2011.12.003.
- Dash, S., Mehar, K., Sharma, N., Mahapatra, T. R. and Panda, S. K. (2018), "Modal analysis of FG sandwich doubly curved shell structure", Struct. Eng. Mech., 68(6), 721-733. https://doi.org/10.12989/sem.2018.68.6.721.
- Ebrahimi, F. and Barati, M. R. (2018), "Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams", Struct. Eng. Mech., 66(2), 237-248. https://doi.org/10.12989/sem.2018.66.2.237.
- Ferreira, A. and Batra, R. (2005), "Natural frequencies of orthotropic, monoclinic and hexagonal plates by a meshless method", J. Sound Vib., 285(3), 734-742. https://doi.org/10.1016/j.jsv.2004.10.025.
- Ferreira, A., Fasshauer, G. and Batra, R. (2009), "Natural frequencies of thick plates made of orthotropic, monoclinic, and hexagonal materials by a meshless method", J. Sound Vib., 319(3-5), 984-992. https://doi.org/10.1016/j.jsv.2008.06.034.
- Ghayesh, M. H. (2019), "Mechanics of viscoelastic functionally graded microcantilevers", Europe J. Mech. A Solids, 73, 492-499. https://doi.org/10.1016/j.euromechsol.2018.09.001.
- Ghayesh, M. H., Farokhi, H. and Farajpour, A. (2019), "Global dynamics of fluid conveying nanotubes", J. Eng. Sci., 135, 37-57. https://doi.org/10.1016/j.ijengsci.2018.11.003.
- Ghayesh, M. H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2017), "Nonlinear bending and forced vibrations of axially functionally graded tapered microbeams", J. Eng. Sci., 120, 51-62. https://doi.org/10.1016/j.ijengsci.2017.03.010.
- Ghugal, Y. M. and Sayyad, A. S. (2010), "A static flexure of thick isotropic plates using trigonometric shear deformation theory", 2(1), 79-90.
- Guessas, H., Zidour, M., Meradjah, M. and Tounsi, A. (2018), "The critical buckling load of reinforced nanocomposite porous plates", Struct. Eng. Mech., 67(2), 115-123. https://doi.org/10.12989/sem.2018.67.2.115.
- Janghorban, M. (2011), "Static and free vibration analysis of carbon nano wires based on Timoshenko beam theory using differential quadrature method", Latin American J Solids Struct., 8(4), 463-472. http://doi.org/10.1590/S1679-78252011000400006.
- Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory", Struct. Eng. Mech., 61 (5), 617-624. https://doi.org/10.12989/sem.2017.61.5.617.
- Karami, B. and Janghorban, M. (2019a), "Characteristics of elastic waves in radial direction of anisotropic solid sphere, a new closed-form solution", Europe J. Mech. A Solids, 76, 36-45. https://doi.org/10.1016/j.euromechsol.2019.03.008.
- Karami, B. and Janghorban, M. (2019b), "On the dynamics of porous nanotubes with variable material properties and variable thickness", J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002.
- Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
- Karami, B., Janghorban, M. and Tounsi, A. (2018a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., https://doi.org/10.1007/s00366-018-0664-9.
- Karami, B., Janghorban, M. and Tounsi, A. (2018b), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Sturct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
- Karami, B., Janghorban, M. and Tounsi, A. (2018c), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin Wall Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025.
- Karami, B., janghorban, M. and Tounsi, A. (2019a), "On exact wave propagation analysis of triclinic material using threedimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487.
- Karami, B., janghorban, M. and Tounsi, A. (2019b), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 70(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
- Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., 7(1), 51-61. https://doi.org/10.12989/anr.2019.7.1.051.
- Karami, B. and Shahsavari, D. (2019), "Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers", Smart Struct. Syst., 23(3), 215-225. https://doi.org/10.12989/sss.2019.23.3.215.
- Karami, B., shahsavari, D., janghorban, M. and Li, L. (2019c), "Influence of homogenization schemes on vibration of functionally graded curved microbeams", Compos. Struct., 216, 67-79. https://doi.org/10.1016/j.compstruct.2019.02.089.
- Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019d), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
- Karami, B., Shahsavari, D., Karami, M. and Li, L. (2019e), "Hygrothermal wave characteristic of nanobeam-type inhomogeneous materials with porosity under magnetic field", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 233(6), 2149-2169. https://doi.org/10.1177/0954406218781680.
- Khetir, H., Bouiadjra, M. B., Houari, M. S. A., Tounsi, A. and Mahmoud, S. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/sem.2017.64.4.391.
- Kirchoff, G. (1850), "Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe", Journal fur die reine und angewandte Mathematik (Crelle's Journal), 40, 51-88.
- Krishna Murty, A. (1986), "Toward a consistent plate theory", AIAA J., 24(6), 1047-1048. https://doi.org/10.2514/3.9388.
- Kumar, R. and Tomar, S. (2006), "Free transverse vibrations of monoclinic rectangular plates with continuously varying thickness and density", J. Appl. Mech., 11(4), 881.
- Lu, L., Guo, X. and Zhao, J. (2017), "A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms", J. Eng. Sci., 119, 265-277. https://doi.org/10.1016/j.ijengsci.2017.06.024.
- Lurie, S. and Solyaev, Y. (2018), "Revisiting bending theories of elastic gradient beams", J. Eng. Sci., 126, 1-21. https://doi.org/10.1016/j.ijengsci.2018.01.002.
- Malekzadeh, P. (2007), "A differential quadrature nonlinear free vibration analysis of laminated composite skew thin plates", Thin Wall Struct., 45(2), 237-250. https://doi.org/10.1016/j.tws.2007.01.011.
- Mindlin, R. D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38. https://doi.org/10.1115/1.4010217
- Rajasekaran, S. and Khaniki, H. B. (2017), "Bending, buckling and vibration of small-scale tapered beams", J. Eng. Sci., 120, 172-188. https://doi.org/10.1016/j.ijengsci.2017.08.005.
- Reddy, J. N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
- Shahsavari, D., Karami, B. and Li, L. (2018), "Damped vibration of a graphene sheet using a higher-order nonlocal strain-gradient Kirchhoff plate model", Comptes Rendus Mécanique, 346(12), 1216-1232. https://doi.org/10.1016/j.crme.2018.08.011.
- She, G.L., Ren, Y.R., Xiao, W.S. and Liu, H. (2018), "Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations", Struct. Eng. Mech., 66(6), 729-736. https://doi.org/10.12989/SEM.2018.66.6.729
- She, G.L., Ren, Y.R. and Yan, K.M. (2019a), "On snap-buckling of porous FG curved nanobeams", Acta Astronautica, 161, 475-484. https://doi.org/10.1016/j.actaastro.2019.04.010.
- She, G.L., Yuan, F.G., Karami, B., Ren, Y.R. and Xiao, W.-S. (2019b), "On nonlinear bending behavior of FG porous curved nanotubes", J. Eng. Sci., 135, 58-74. https://doi.org/10.1016/j.ijengsci.2018.11.005.
- Singhal, P. and Bindal, G. (2012), "Generalised differential quadrature method in the study of free vibration analysis of monoclinic rectangular plates", American J. Comput. Appl. Math., 2(4), 166-173. https://doi.org/10.5923/j.ajcam.20120204.05
- Sobhy, M. (2017), "Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory", Struct. Eng. Mech., 63 (3), 401-415. https://doi.org/10.12989/sem.2017.63.3.401.
- Soldatos, K. P. (2004), "Complex potential formalisms for bending of inhomogeneous monoclinic plates including transverse shear deformation", J. Mech. Physics Solids, 52 (2), 341-357. https://doi.org/10.1016/S0022-5096(03)00102-9
- Tornabene, F., Fantuzzi, N., Viola, E. and Carrera, E. (2014), "Static analysis of doubly-curved anisotropic shells and panels using CUF approach, differential geometry and differential quadrature method", Compos. Struct., 107, 675-697. https://doi.org/10.1016/j.compstruct.2013.08.038.
- Yousfi, M., Atmane, H. A., Meradjah, M., Tounsi, A. and Bennai, R. (2018), "Free vibration of FGM plates with porosity by a shear deformation theory with four variables", Struct. Eng. Mech., 66 (3), 353-368. https://doi.org/10.12989/SEM.2018.66.3.353
- Zemri, A., Houari, M. S. A., Bousahla, A. A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54 (4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693.