References
- Akgoz, B. and O. Civalek (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.
- Arrigan, J., Huang, C., Staino, A., Basu, B., and Nagarajaiah, S. (2014), "A frequency tracking semi-active algorithm for control of edgewise vibrations in wind turbine blades", Smart Struct. Syst., 13(2), 177-201. https://doi.org/10.12989/sss.2014.13.2.177.
- Annigeri, A.R., N. Ganesan, and S. Swarnamani (2007), "Free vibration behaviour of multiphase and layered magneto-electroelastic beam", J. Sound Vib., 299(1), 44-63. https://doi.org/10.1016/j.jsv.2006.06.044.
- Atmane, H.A., A. Tounsi, and F. Bernard (2015), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", J. Mech. Mater. Design, 1-14. https://doi.org/10.1007/s10999-015-9318-x.
- Beldjelili, Y., Tounsi, A., and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst.., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.
- Boutahar, L. and R. Benamar (2016), "A homogenization procedure for geometrically non-linear free vibration analysis of functionally graded annular plates with porosities, resting on elastic foundations", Ain Shams Eng. J., 7(1), 313-333. https://doi.org/10.1016/j.asej.2015.11.016.
- Bouafia, K., Kaci, A., Houari, M. S. A., Benzair, A., and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst.., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115.
- Bjurström, H., Ryden, N., and Birgisson, B. (2016), "Non-contact surface wave testing of pavements: comparing a rolling microphone array with accelerometer measurements", Smart Struct. Syst., 17(1), 1-15. https://doi.org/10.12989/sss.2016.17.1.001.
- Benveniste, Y. (1995), "Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases", Physical Review B, 51(22). https://doi.org/10.1103/PhysRevB.51.16424.
- Chikh, A., Tounsi, A., Hebali, H. and Ma hmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.
- Chen, W., K.Y. Lee, and H. Ding (2005), "On free vibration of non-homogeneous transversely isotropic magneto-electroelastic plates", J. Sound Vib., 279(1), 237-251. https://doi.org/10.1016/j.jsv.2003.10.033.
- Civalek, O. (2007), "Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSC-HDQ methods", Appl. Math. Modell., 31(3), 606-624. https://doi.org/10.1016/j.apm.2005.11.023.
- Civalek, Ö. (2006), "Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic foundation", J. Sound Vib., 294(4), 966-980. https://doi.org/10.1016/j.jsv.2005.12.041.
- Daga, A., N. Ganesan, and K. Shankar (2009), "Transient dynamic response of cantilever magneto-electro-elastic beam using finite elements", J. Comput. Method. Eng. Sci. Mech., 10(3), 173-185. https://doi.org/10.1080/15502280902797207.
- Ebrahimi, F. and M. Mokhtari (2014), "Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method", J. Brazil. Soc. Mech. Sci. Eng., 1-10. https://doi.org/10.1007/s40430-014-0255-7.
- Ebrahimi, F. and M. Zia (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities", Acta Astronautica, 116, 117-125. https://doi.org/10.1016/j.actaastro.2015.06.014.
- Ebrahimi, F., F. Ghasemi, and E. Salari (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y.
- Glaser, S.D., Shoureshi, R.A. and Pescovitz, D. (2005), "Frontiers in sensors and sensing systems", Smart Struct. Syst., 1(1), 103-120. https://doi.org/10.12989/sss.2005.1.1.103
- Huang, D., H. Ding, and W. Chen (2007), "Analytical solution for functionally graded magneto-electro-elastic plane beams", J. Eng. Sci., 45(2), 467-485. https://doi.org/10.1016/j.ijengsci.2007.03.005.
- Huang, Z., C. Lü, and W. Chen (2008), "Benchmark solutions for functionally graded thick plates resting on Winkler-Pasternak elastic foundations", Compos. Struct., 85(2), 95-104. https://doi.org/10.1016/j.compstruct.2007.10.010.
- Hashemi, S.H., H.R.D. Taher and M. Omidi (2008), "3-D free vibration analysis of annular plates on Pasternak elastic foundation via p-Ritz method", J. Sound Vib., 311(3), 1114-1140. https://doi.org/10.1016/j.jsv.2007.10.020.
- Karami B, Shahsavari D and Li, L, (2018), "Temperaturedependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field", J. Thermal Stress, 41(4), 483-499. https://doi.org/10.1080/01495739.2017.1393781.
- Kim, R.E., Moreu, F., and Spencer, B.F. (2015), "System identification of an in-service railroad bridge using wireless smart sensors", Smart Struct. Syst., 15(3), 683-698. https://doi.org/10.12989/sss.2015.15.3.683.
- Ke, L.-L. and Y.-S. Wang (2014), "Free vibration of sizedependent magneto-electro-elastic nanobeams based on the nonlocal theory", Physica E Low Diemnsional Syst. Nanostruct., 63, 52-61. https://doi.org/10.1016/j.physe.2014.05.002.
- Kattimani, S. and M. Ray (2015), "Control of geometrically nonlinear vibrations of functionally graded magneto-electroelastic plates", J. Mech. Sci., 99, 154-167. https://doi.org/10.1016/j.ijmecsci.2015.05.012.
- Kumaravel, A., N. Ganesan, and R. Sethuraman (2007), "Buckling and vibration analysis of layered and multiphase magnetoelectro-elastic beam under thermal environment", Multidiscipline Model. Mater. Struct., 3(4), 461-476. https://doi.org/10.1163/157361107782106401.
- Liu, M.F. and T.P. Chang (2010), "Closed form expression for the vibration problem of a transversely isotropic magneto-electroelastic plate", J. Appl. Mech., 77(2). https://doi.org/10.1115/1.3176996.
- Malekzadeh, P. (2009), "Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations", Compos. Struct., 89(3), 367-373. https://doi.org/10.1016/j.compstruct.2008.08.007.
- Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, B. B. (2016), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Brazil. Soc. Mech. Sci. Eng. 1-19. https://doi.org/10.1007/s40430-015-0482-6.
- Mantari, J., E. Bonilla, and C.G. Soares (2014), "A new tangentialexponential higher order shear deformation theory for advanced composite plates", Compos. Part B, 60, 319-328. https://doi.org/10.1016/j.compositesb.2013.12.001.
- Ochs, S., Li, S., Adams, C., and Melz, T. (2017), "Efficient Experimental Validation of Stochastic Sensitivity Analyses of Smart Systems", Smart Struct. Mater., 97-113. https://doi.org/10.1007/978-3-319-44507-6_5.
- Peng, X., M. Yan, and W. Shi, (2007), "A new approach for the preparation of functionally graded materials via slip casting in a gradient magnetic field", Scripta materialia, 56(10), 907-909. https://doi.org/10.1016/j.scriptamat.2006.12.020.
- Providakis, C. P., Triantafillou, T. C., Karabalis, D., Papanicolaou, A., Stefanaki, K., Tsantilis, A. and Tzoura, E. (2014). "Simulation of PZT monitoring of reinforced concrete beams retrofitted with CFRP", Smart Struct. Syst., 14(5), 811-830. https://doi.org/10.12989/sss.2014.14.5.811.
- Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", J. Eng. Sci., 43(3), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006.
- Pradhan, S. and T. Murmu (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321(1), 342-362. https://doi.org/10.1016/j.jsv.2008.09.018.
- Razavi, S. and A. Shooshtari (2015), "Nonlinear free vibration of magneto-electro-elastic rectangular plates", Compos. Struct., 377-384. https://doi.org/10.1016/j.compstruct.2014.08.034.
- Rezaei, A. and A. Saidi (2016), "Application of Carrera Unified Formulation to study the effect of porosity on natural frequencies of thick porous-cellular plates", Compos. Part B, 91, 361-370. https://doi.org/10.1016/j.compositesb.2015.12.050.
- Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
- Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
- Sladek, J., Sladek, V., Krahulec, S., Chen, C.S. and Young, D.L. (2015), "Analyses of Circular Magnetoelectroelastic Plates with Functionally Graded Material Properties", Mech. Adv. Mater. Struct., 22(6), 479-489. https://doi.org/10.1080/15376494.2013.807448.
- Tang, H., Li, L. and Hu, Y. (2018), "Buckling analysis of twodirectionally porous beam", Aerosp. Sci. Technol., 78, 471-479. https://doi.org/10.1016/j.ast.2018.04.045.
- Tiwari, R., Kim, K.J., and Kim, S.M. (2008), "Ionic polymermetal composite as energy harvesters", Smart Struct. Syst., 4(5), 549-563. https://doi.org/10.12989/sss.2008.4.5.549.
- Thai, H. T., and Choi, D. H. (2012), "A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation", Compos. Part B, 43(5), 2335-2347. https://doi.org/10.1016/j.compositesb.2011.11.062.
- Vinyas, M. and Kattimani, S.C. (2017a), "Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads", Compos. Struct., 163, 216-237. https://doi.org/10.1016/j.compstruct.2016.12.040.
- Vinyas, M. and Kattimani, S.C. (2017b), "A Finite element based assessment of static behavior of multiphase magneto-electroelastic beams under different thermal loading", Struct. Eng. Mech., 62(5), 519-535. https://doi.org/10.12989/sem.2017.62.5.519.
- Vinyas, M. and Kattimani, S.C. (2017c), "Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam", Struct. Eng. Mech., 63(4), 481-495. https://doi.org/10.12989/sem.2017.63.4.481.
- Vinyas, M. and Kattimani, S.C. (2017d), "Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment", Coupled Syst. Mech., 6(3), 351-368. https://doi.org/10.12989/csm.2017.6.3.351.
- Vinyas, M. and Kattimani, S.C. (2017e), "A 3D finite element static and free vibration analysis of magneto-electro-elastic beam", Coupled Syst. Mech, 6(4), 465-485. https://doi.org/10.12989/csm.2017.6.4.465.
- Vinyas, M. and Kattimani, S.C. (2017f), "Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: A finite element study", Compos. Struct. 178, 63-85. https://doi.org/10.1016/j.compstruct.2017.06.068.
- Vinyas, M. and Kattimani, S.C. (2017g), "Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis", Compos. Struct., 180, 617-637. https://doi.org/10.1016/j.compstruct.2017.08.015.
- Vinyas, M. and Kattimani, S.C. (2018), "Finite element evaluation of free vibration characteristics of magneto-electro-elastic rectangular plates in hygrothermal environment using higherorder shear deformation theory", Compos. Struct., 202, 1339-1352. https://doi.org/10.1016/j.compstruct.2018.06.069.
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
- Wu, C.P. and Y.H. Tsai (2007), "Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux", J. Eng. Sci., 45(9), 744-769. https://doi.org/10.1016/j.ijengsci.2007.05.002.
- Wattanasakulpong, N. and A. Chaikittiratana (2015), "Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method", Meccanica, 1-12. https://doi.org/10.1007/s11012-014-0094-8.
- Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Design, 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049.
- Xiang, Z., Chan, T. H., Thambiratnam, D. P. and Nguyen, T. (2016), "Synergic identification of prestress force and moving load on prestressed concrete beam based on virtual distortion method", Smart Struct. Syst., 17(6), 917-933. https://doi.org/10.12989/sss.2016.17.6.917.
- Xin, L. and Z. Hu (2015), "Free vibration of layered magnetoelectro-elastic beams by SS-DSC approach", Compos. Struct., 125, 96-103. https://doi.org/10.1016/j.compstruct.2015.01.048.
- Ying, Z. G., Ni, Y. Q. and Duan, Y. F. (2017), "Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core", Smart Struct. Syst., 19(1), 21-31. https://doi.org/10.12989/sss.2017.19.1.021.
- Ying, J., C. Lu, and W. Chen (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004.
- Yun, G.J., Ogorzalek, K.A., Dyke, S.J., and Song, W. (2009), "A two-stage damage detection approach based on subset selection and genetic algorithms", Smart Struct. Syst., 5(1), 1-21. https://doi.org/10.12989/sss.2009.5.1.001.
- Yi, T. H., Li, H. N. and Gu, M. (2013), "Wavelet based multi-step filtering method for bridge health monitoring using GPS and accelerometer", Smart Struct. Syst., 11(4), 331-348. https://doi.org/10.12989/sss.2013.11.4.331.
- Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO 2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 2001. 68(1), 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2.
- Zhou, D., Lo, S. H., Au, F. T. K. and Cheung, Y. K. (2006), "Three-dimensional free vibration of thick circular plates on Pasternak foundation", J. Sound Vib., 292(3), 726-741. https://doi.org/10.1016/j.jsv.2005.08.028.
- Zhou, Y. G., Chen, Y. M., and Ding, H. J. (2005), "Analytical solutions to piezoelectric bimorphs based on improved FSDT beam model", Smart Struct. Syst., 1(3), 309-324. https://doi.org/10.12989/sss.2005.1.3.309.
Cited by
- On bending analysis of perforated microbeams including the microstructure effects vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.765