DOI QR코드

DOI QR Code

Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations

  • 투고 : 2018.12.31
  • 심사 : 2019.05.10
  • 발행 : 2019.10.10

초록

The functionally graded materials (FGM) used in plates contain probably a porosity volume fraction which needs taking into account this aspect of imperfection in the mechanical bahavior of such structures. The present work aims to study the effect of the distribution forms of porosity on the bending of simply supported FG plate reposed on the Winkler-Pasternak foundation. A refined theory of shear deformation is developed to study the effect of the distribution shape of porosity on static behavior of FG plates. It was found that the distribution form of porosity significantly influence the mechanical behavior of FG plates, in terms of deflection, normal and shear stress. It can be concluded that the proposed theory is simple and precise for the resolution of the behavior of flexural FGM plates resting on elastic foundations while taking into account the shape of distribution of the porosity.

키워드

과제정보

연구 과제 주관 기관 : Algerian Ministry of Higher Education and Scientific Research (MESRS)

참고문헌

  1. Abdelaziz, H. H., Meziane, M. A. A., Bousahla, A. A., Tounsi, A., Mahmoud, S. R. and Alwabli, A. S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.
  2. Abdelbasset, C., Hassaine Daouadji, T., Abderezak, R., Belkacem, A., Abbes, B., Rabia, B. and Abbes, F. (2017), "A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams", Adv. Mater. Res., 6(4), 317-328. https://doi.org/10.12989/amr.2017.6.4.317.
  3. Abdelhak Z., Lazreg Hadji, Z. Khelifa, T. Hassaine daouadji and E.A. Adda Bedia, (2016) "Analysis of buckling response of functionally graded sandwich plates using a refined shear deformation theory", Wind Struct., 22(3), 291-305. https://doi.org/10.12989/was.2016.22.3.291.
  4. Abualnour, M., Houari, M. S. A., Tounsi, A. and Mahmoud, S. R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047
  5. Adim B., T. Hassaine Daouadji, B. Abbas, A. Rabahi (2016) "Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory", J. Mech. Industry, 17(5), 512. https://doi.org/10.1051/meca/2015112.
  6. Ait Atmane, H., Tounsi, A. and Bernard, F. (2015), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater., 1-14. https://doi.org/10.1007/s10999-015-9318-x.
  7. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. http://dx.doi.org/10.12989/sem.2015.53.6.1143.
  8. Attia, A., Bousahla, A. A., Tounsi, A., Mahmoud, S. R. and Alwabli, A. S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.
  9. Belabed, Z., Bousahla, A. A., Houari, M. S. A., Tounsi, A. and Mahmoud, S. R (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.
  10. Belkacem, A.,, Hassaine Daouadji, T., Rabia, B. and Hadji, L. (2016), "An efficient and simple higher order shear deformation theory for bending analysis of composite plates under various boundary conditions", Earthq. Struct., 11(1), 63-82. https://doi.org/10.12989/eas.2016.11.1.063
  11. Belkacem, A.,, Tahar Hassaine Daouadji, Rabahi Abderrezak, Benhenni Mohamed Amine, Zidour Mohamed and Abbes Boussad (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
  12. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A. A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/scs.2017.25.3.257.
  13. Benachour A., Hassaine Daouadji T., Ait atman H., Tounsi, A., and Meftah S.A. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient using", Compos. B Eng., 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032.
  14. Benchohra, M., Driz, H., Bakora, A., Tounsi, A., Adda Bedia, E. A. and Mahmoud, S.R. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., 65(1), 19-31. https://doi.org/10.12989/sem.2018.65.1.019.
  15. Benferhat Rabia, Tahar Hassaine Daouadji and Mohamed Said Mansour (2016a), "Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory", Comptes Rendus Mecanique, 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002.
  16. Benferhat Rabia, Tahar Hassaine Daouadji, Lazreg Hadji and Mohamed Said Mansour (2016b), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123.
  17. Benferhat Rabia, Tahar Hassaine Daouadji, Mohamed Said Mansour and Lazreg Hadji (2016c), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Eartq. Struct., 10(5), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429.
  18. Benferhat, R., Hassaine Daouadji, T. and Mansour, M.S. (2014), "A Higher Order Shear Deformation Model for Bending Analysis of Functionally Graded Plates", Transactions Indian Institute Metals, 68(1), 7-16. https://doi.org/10.1007/s12666-014-0428-1.
  19. Benhenni Mohamed, T. Hassaine Daouadji, Boussad Abbes, Yu Ming LI and Fazilay Abbes (2018), "Analytical and Numerical Results for Free Vibration of Laminated Composites Plates", J. Chem. Molecul. Eng., 12(6), 300-304.
  20. Bensattalah Tayeb, Khaled Bouakkaz, Mohamed Zidour and Tahar Hassaine Daouadji (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339.
  21. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147.
  22. Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Mahmoud, S. R. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/sem.2018.66.1.061
  23. Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B, 42, 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.
  24. Cooke, D.W. and Levinson, M. (1983), "Thick rectangular plates-II, the generalized Levy solution", Int. J. Mech. Sci., 25, 207-215. https://doi.org/10.1016/0020-7403(83)90094-2.
  25. Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. B Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020.
  26. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
  27. Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109.
  28. Hadji, L. and Adda Bedia, E.A. (2015a), "Influence of the porosities on the free vibration of FGM beams", Wind Struct., 21(3), 273-287. https://doi.org/10.12989/was.2015.21.3.273.
  29. Hadji, L., Hassaine Daouadji, T. and Adda Bedia, E.A. (2015b), "A refined exponential shear deformation theory for free vibration of FGM beam with porosities", Geomech. Eng., 9(3), 361-372. https://doi.org/10.12989/gae.2015.9.3.361.
  30. Hassaine Daouadji T. and Belkacem, A., (2017), "Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory", Struct. Eng. Mech., 61(1), 49-63. https://doi.org/10.12989/sem.2017.61.1.049.
  31. Hassaine Daouadji T., Belkacem, A., Rabia Benferhat, (2016), "Bending analysis of an imperfect FGM plates under hygrothermo-mechanical loading with analytical validation", Adv. Mater. Res., 5(1), 35-53. https://doi.org/10.12989/amr.2016.5.1.035.
  32. Hassaine Daouadji T., Tounsi, A., Adda bedia E.A. (2013), "A New Higher Order Shear Deformation Model for Static Behavior of Functionally Graded Plates", Appl. Math. Mech., 5(3), 351-364. https://doi.org/10.1017/S2070073300002721.
  33. Hassaine Daouadji, T. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Design, 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  34. Hassaine Daouadji, T., Benferhat, R. and Belkacem, A. (2016), "Bending analysis of an imperfect advanced composite plates resting on the elastic foundations", Coupled Syst. Mech., 5(3), 269-285. https://doi.org/10.12989/csm.2016.5.3.269.
  35. Khalifa, Z., Hadji, L., Hassaine Daouadji, T. and Bourada, M. (2018), "Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 67(2), 125-130. https://doi.org/10.12989/sem.2018.67.2.125.
  36. Lee, K.H. , Lim, G.T. and Wang, C.M. (2002), "Thick Levy plates re-visited", Int. J. Solids Struct., 39, 127-144. https://doi.org/10.1016/S0020-7683(01)00205-0.
  37. Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012) "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", Int. J. of Solids and Structures, 49, 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008.
  38. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A. A. and Mahmoud, S. R (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.
  39. Mokhtar, Y., Heireche, H., Bousahla, A. A., Houari, M. S. A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397.
  40. Rabahi, A., Hassaine Daouadji, T., Benferhat, R. and Adim, B. (2018), "Nonlinear analysis of damaged RC beams strengthened with glass fiber reinforced polymer plate under symmetric loads", Earthq. Struct., 15(2), 113-122. https://doi.org/10.12989/eas.2018.15.2.113.
  41. Rabia, B., Rabahi, A., Hassaine Daouadji, T., Abbes, B., Adim, B. and Abbes, F. (2018), "Analytical analysis of the interfacial shear stress in RC beams strengthened with prestressed exponentiallyvarying properties plate", Adv. Mater. Res., 7(1), 29-44. https://doi.org/10.12989/amr.2018.7.1.029.
  42. Reddy, J.N., Wang, C.M., Lim, G.T. and Ng, K.H. (2001), "Bending solutions of Levinson beams and plates in terms of the classical theories", J. Solids Struct., 38(2001), 4701-4720. https://doi.org/10.1016/S0020-7683(00)00298-5.
  43. Slimane, M. (2018), "Analysis of bending of ceramic-metal functionally graded plates with porosities using of high order shear theory", Adv. Eng. Forum, 30, 54-70. https://doi.org/10.4028/www.scientific.net/AEF.30.54.
  44. Thai, H.T. and Choi, D.H (2013), "Finite element formulation of various four unknown shear deformation theories for functionally graded plates", Finite Elem. Anal. Des., 75(2013), 50-61. https://doi.org/10.1016/j.finel.2013.07.003.
  45. Tounsi, A., Sid Ahmed, H., Benyoucef ,S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009.
  46. Wattanasakulponga, N. and Ungbhakornb, V. (2014), "Linear and non linear vibration analysis of elastically restrained ends FGM beams with porosities", Aero. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  47. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A. A. and Houari, M. S. A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
  48. Youcef, D. O., Kaci, A., Benzair, A., Bousahla, A. A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21(1), 65-74. https://doi.org/10.12989/sss.2018.21.1.065.
  49. Younsi, A., Tounsi, A., Zaoui, F. Z., Bousahla, A. A. and Mahmoud, S. R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519.
  50. Zaoui, F. Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
  51. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Modell., 30, 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
  52. Zenkour, A.M. and Radwan, A.F. (2018), "Compressive study of functionally graded plates resting on Winkler-Pasternak foundations under various boundary conditions using hyperbolic shear deformation theory", Arch. Civil Mech. Eng., 18, 645-658. https://doi.org/10.1016/j.acme.2017.10.003.
  53. Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S. R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125.
  54. Zohra A., Lazreg Hadji, Z. Khelifa, T. Hassaine daouadji, E.A. and Adda Bedia (2016), "Analysis of buckling response of functionally graded sandwich plates using a refined shear deformation theory", Wind Struct., 22(3), 291-305. https://doi.org/10.12989/was.2016.22.3.291.

피인용 문헌

  1. Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2019, https://doi.org/10.12989/amr.2020.9.4.265
  2. Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation vol.9, pp.6, 2019, https://doi.org/10.12989/csm.2020.9.6.499
  3. Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
  4. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2019, https://doi.org/10.12989/sem.2021.77.2.217
  5. Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.281
  6. Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations vol.77, pp.6, 2019, https://doi.org/10.12989/sem.2021.77.6.797
  7. Modeling and analysis of the imperfect FGM-damaged RC hybrid beams vol.6, pp.2, 2019, https://doi.org/10.12989/acd.2021.6.2.117
  8. Mechanical analysis of bi-functionally graded sandwich nanobeams vol.11, pp.1, 2019, https://doi.org/10.12989/anr.2021.11.1.055
  9. New solution for damaged porous RC cantilever beams strengthening by composite plate vol.10, pp.3, 2019, https://doi.org/10.12989/amr.2021.10.3.169