References
- Hardie DG, Carling D, Carlson M. The AMP-activated/ SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem. 1998;67:821-855. https://doi.org/10.1146/annurev.biochem.67.1.821
- Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007;8:774-785. https://doi.org/10.1038/nrm2249
- Kayikci O, Nielsen J. Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res. 2015;15:fov068. https://doi.org/10.1093/femsyr/fov068
- Thompson-Jaeger S, Francois J, Gaughran JP, et al. Deletion of SNF1 affects the nutrient response of yeast and resembles mutations which activate the adenylate cyclase pathway. Genetics. 1991;129:697-706. https://doi.org/10.1093/genetics/129.3.697
- Alepuz PM, Cunningham KW, Estruch F. Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene. Mol Microbiol. 1997;26:91-98. https://doi.org/10.1046/j.1365-2958.1997.5531917.x
- McCartney RR, Schmidt MC. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J Biol Chem. 2001;276:36460-36466. https://doi.org/10.1074/jbc.M104418200
- Dubacq C, Chevalier A, Mann C. The protein kinase Snf1 is required for tolerance to the ribonucleotide reductase inhibitor hydroxyurea. Mol Cell Biol. 2004;24:2560-2572. https://doi.org/10.1128/MCB.24.6.2560-2572.2004
- Portillo F, Mulet JM, Serrano R. A role for the non-phosphorylated form of yeast Snf1: tolerance to toxic cations and activation of potassium transport. FEBS Lett. 2005;579:512-516. https://doi.org/10.1016/j.febslet.2004.12.019
- Hong SP, Carlson M. Regulation of snf1 protein kinase in response to environmental stress. J Biol Chem. 2007;282:16838-16845. https://doi.org/10.1074/jbc.M700146200
- Hedbacker K, Carlson M. SNF1/AMPK pathways in yeast. Front Biosci. 2008;13:2408-2420. https://doi.org/10.2741/2854
- Pastor MM, Proft M, Pascual-Ahuir A. Mitochondrial function is an inducible determinant of osmotic stress adaptation in yeast. J Biol Chem. 2009;284:30307-30317. https://doi.org/10.1074/jbc.M109.050682
- Woods A, Munday MR, Scott J, et al. Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem. 1994;269:19509-19515. https://doi.org/10.1016/S0021-9258(17)32198-1
- Beckonert O, Keun HC, Ebbels TM, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2:2692-2703. https://doi.org/10.1038/nprot.2007.376
- Kim HK, Choi YH, Verpoorte R. NMR-based metabolomic analysis of plants. Nat Protoc. 2010;5:536-549. https://doi.org/10.1038/nprot.2009.237
- Kim J, Oh J, Sung GH. MAP kinase Hog1 regulates metabolic changes induced by hyperosmotic stress. Front Microbiol. 2016;7:732.
- Hounsa CG, Brandt EV, Thevelein J, et al. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology. 1998;144:671-680. https://doi.org/10.1099/00221287-144-3-671
- Olz R, Larsson K, Adler L, et al. Energy flux and osmoregulation of Saccharomyces cerevisiae grown in chemostats under NaCl stress. J Bacteriol. 1993;175:2205-2213. https://doi.org/10.1128/jb.175.8.2205-2213.1993
- Oren A. Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev. 1999;63:334-348. https://doi.org/10.1128/MMBR.63.2.334-348.1999
Cited by
- Metabolomics study of polysaccharide extracts from Polygonatum sibiricum in mice based on 1H NMR technology vol.100, pp.12, 2019, https://doi.org/10.1002/jsfa.10523