References
- Oerke EC, Dehne HW, Schonbeck F, et al. Crop production and crop protection: estimated losses in major food and cash crops. 1st ed. Amsterdam: Elsevier; 1994.
- Cook RJ. Biological control of plant pathogens: theory to application. Phytopathology. 1985;75:25-28. https://doi.org/10.1094/Phyto-75-25
- Ames BN. Identifying environmental chemicals causing mutations and cancer. Science. 1979;204:587-593. https://doi.org/10.1126/science.373122
- Staub T, Sozzi D. Fungicide resistance: a continuing challenge. Plant Dis. 1984;68:1026-1031. https://doi.org/10.1094/PD-68-1026
- Huang TC, Chang MC. Studies on xanthobacidin, a new antibiotic from Bacillus subtilis active against Xanthomonas. Bot Bull Acad Sinica. 1975;16:137-148.
- Yoshikawa Y, Ikai K, Umeda Y, et al. Isolation, structures, and antifungal activities of new aureobasidins. J Antibiot. 1993;46:1347-1354. https://doi.org/10.7164/antibiotics.46.1347
- Cha MS, Lim EG, Lee KH, et al. Optimal culture conditions for production of environment-friendly biosurfactant by Pseudomonas sp. EL-G527. J Environ Sci. 2002;11:177-182.
- Jo YK, Chang SW, Boehm M, et al. Rapid development of fungicide resistance by Sclerotinia homoeocarpa on turfgrass. Phytopathology. 2008;98:1297-1304. https://doi.org/10.1094/PHYTO-98-12-1297
- Scherwinski K, Grosch R, Berg G. Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on non-target microbes. FEMS Microbiol Ecol. 2008;64:106-116. https://doi.org/10.1111/j.1574-6941.2007.00421.x
- Koch E, Loffler I. Partial characterization of the antimicrobial activity of Streptomyces antimycoticus FZB53. J Phytopathol. 2009;157:235-242. https://doi.org/10.1111/j.1439-0434.2008.01484.x
- Van Leeuwen MR, Van Doorn TM, Golovina EA, et al. Water- and air-distributed conidia differ in sterol content and cytoplasmic microviscosity. Appl Environ Microbiol. 2010;76:366-369. https://doi.org/10.1128/AEM.01632-09
- Jenssen H, Hamill P, Hancock R. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19:491-511. https://doi.org/10.1128/CMR.00056-05
- Selvin J, Shanmughapriya S, Gandhimathi R, et al. Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei Mad08. Appl Microbiol Biotechnol. 2009;83:435-445. https://doi.org/10.1007/s00253-009-1878-y
- Welscher YM, Napel HH, Balague MM, et al. Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. J Biol Chem. 2008;283:6393-6401. https://doi.org/10.1074/jbc.M707821200
- Donio MBS, Ronica FA, Thanga Viji V, et al. Halomonas sp. BS4, a biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. Springerplus. 2013;2:149-159. https://doi.org/10.1186/2193-1801-2-149
- Rhee K-H. Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus, Pyricularia oryzae. J Microbiol Biotechnol. 2003;13:984-988.
- Rhee K-H. Cyclic dipeptides exhibit synergistic, broad spectrum antimicrobial effects and have anti-mutagenic properties. Int J Antimicrob Agents. 2004;24:423-427. https://doi.org/10.1016/j.ijantimicag.2004.05.005
- Li H, Liu L, Zhang S, et al. Identification of antifungal compounds produced by Lactobacillus casei AST18. Curr Microbiol. 2012;65:156-161. https://doi.org/10.1007/s00284-012-0135-2
- Kwak M-K, Liu R, Kim M-K, et al. Cyclic dipeptides from lactic acid bacteria inhibit the proliferation of pathogenic fungi. J Microbiol. 2014;52:64-70. https://doi.org/10.1007/s12275-014-3520-7
- Liu R, Kim AH, Kwak M-K, et al. Proline-based cyclic dipeptides from Korean fermented vegetable kimchi and from Leuconostoc mesenteroides LBPK06 have activities against multidrug-resistant bacteria. Front Microbiol. 2017;8:761. https://doi.org/10.3389/fmicb.2017.00761
- Mika JT, Moiset G, Cirac AD, et al. Structural basis for the enhanced activity of cyclic antimicrobial peptides: the case of BPC194. Biochim Biophys Acta. 2011;1808:2197-2205. https://doi.org/10.1016/j.bbamem.2011.05.001
Cited by
- A novel streptomyces rhizobacteria from desert soil with diverse anti-fungal properties vol.16, 2020, https://doi.org/10.1016/j.rhisph.2020.100243
- Identification and Characterization of a Streptomyces albus Strain and Its Secondary Metabolite Organophosphate against Charcoal Rot of Sorghum vol.9, pp.12, 2019, https://doi.org/10.3390/plants9121727
- Deciphering the antagonistic effect of Streptomyces spp. and host-plant resistance induction against charcoal rot of sorghum vol.253, pp.2, 2019, https://doi.org/10.1007/s00425-021-03577-5
- Biocontrol of Soil-Borne Pathogens of Solanum lycopersicum L. and Daucus carota L. by Plant Growth-Promoting Actinomycetes: In Vitro and In Planta Antagonistic Activity vol.10, pp.10, 2021, https://doi.org/10.3390/pathogens10101305
- Bioactive antifungal metabolites produced by Streptomyces amritsarensis V31 help to control diverse phytopathogenic fungi vol.52, pp.4, 2019, https://doi.org/10.1007/s42770-021-00625-w
- A Streptomyces rhizobacterium with antifungal properties against spadix rot in flamingo flowers vol.117, 2019, https://doi.org/10.1016/j.pmpp.2021.101784